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Isotropic Antenna Element
In this section...
“Support for Isotropic Antenna Elements” on page 1-2
“Backbaffled Isotropic Antenna” on page 1-2
“Response of Backbaffled Isotropic Antenna Element” on page 1-5

Support for Isotropic Antenna Elements
An isotropic antenna element radiates equal power in all directions. If the antenna
element is backbaffled, the antenna radiates equal power in all directions for which the
azimuth angle satisfies –90 ≤ φ ≤ 90 and zero power in all other directions. To construct
an isotropic antenna, use the phased.IsotropicAntennaElement System object™.
When you use this object, you must specify these antenna properties:

• The operating frequency range of the antenna using the FrequencyRange property.
• Whether or not the response of the antenna is backbaffled at azimuth angles outside

the interval [–90,90] using the BackBaffled property.

You can determine the voltage response of the isotropic antenna element at specified
frequencies and angles by executing the System object.

Backbaffled Isotropic Antenna
This example shows how to construct a backbaffled isotropic antenna element with a
uniform frequency response over a range of azimuth angles from [-180,180] degrees and
elevation angles from [-90,90] degrees. The antenna operates between 300 MHz and 1
GHz. Show the antenna pattern at 1 GHz.

fc = 1e9;
antenna = phased.IsotropicAntennaElement(...
    'FrequencyRange',[300e6 1e9],'BackBaffled',false);
pattern(antenna,fc,[-180:180],[-90:90],'CoordinateSystem','polar',...
    'Type','power')
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Using the antenna pattern method, plot the antenna response at zero degrees elevation
for all azimuth angles at 1 GHz.

pattern(antenna,1e9,[-180:180],0,'CoordinateSystem','rectangular',...
    'Type','powerdb')

 Isotropic Antenna Element

1-3



Setting the BackBaffled property to true restricts the antenna response to azimuth
angles in the interval [-90,90] degrees. In this case, plot the antenna response in three
dimensions.

antenna.BackBaffled = true;
pattern(antenna,fc,[-180:180],[-90:90],'CoordinateSystem','polar',...
    'Type','power')
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1-4



Response of Backbaffled Isotropic Antenna Element
This example shows how to design a backbaffled isotropic antenna element and obtain its
response. First, construct an X-band isotropic antenna element that operates from 8 to 12
GHz setting the Backbaffle property to true. Obtain the antenna element response at
4, 10, and 14 GHz at azimuth angles between -100 and 100 degrees in 50 degree
increments. All elevation angles are by default equal to zero.

antenna = phased.IsotropicAntennaElement(...
    'FrequencyRange',[8e9 12e9],'BackBaffled',true);
respfreqs = [6:4:14]*1e9;

 Isotropic Antenna Element
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respazangles = -100:50:100;
anresp = antenna(respfreqs,respazangles)

anresp = 5×3

     0     0     0
     0     1     0
     0     1     0
     0     1     0
     0     0     0

The antenna response in anresp is a matrix having row dimension equal to the number of
azimuth angles in respazangles and column dimension equal to the number of
frequencies in respfreqs. The response voltage in the first and last columns of anresp
are zero because those columns contain the antenna response at 6 and 14 GHz,
respectively. These frequencies lie outside the antenna operating frequency range.
Similarly, the first and last rows of anresp contain all zeros because BackBaffled
property is set to true. The first and last row contain the antenna response at azimuth
angles outside of [-90,90].

To obtain the antenna response at nonzero elevation angles, input the angles to the object
as a 2-by-M matrix where each column is an angle in the form [azimuth;elevation].

release(antenna)
respelangles = -90:45:90;
respangles = [respazangles; respelangles];
anresp = antenna(respfreqs,respangles)

anresp = 5×3

     0     1     0
     0     1     0
     0     1     0
     0     1     0
     0     1     0

Notice that anresp(1,2) and anresp(5,2) represent the antenna voltage response at
the azimuth-elevation angle pairs (-100,-90) and (100,90) degrees. Although the azimuth
angles lie in the baffled region, because the elevation angles are equal to +/- 90 degrees,
the responses are unity. In this case, the resulting elevation cut degenerates to a point.
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Cosine Antenna Element
In this section...
“Support for Cosine Antenna Elements” on page 1-7
“Concentrating Cosine Antenna Response” on page 1-8
“Plot 3-D Response of Cosine Antenna Element” on page 1-9

Support for Cosine Antenna Elements
The phased.CosineAntennaElement object models an antenna element whose
response follows a cosine function raised to a specified power in both the azimuth and
elevation directions.

The object returns the field response (also called field pattern)

f (az, el) = cosm(az)cosn(el)

of the cosine antenna element.

In this expression

• az is the azimuth angle.
• el is the elevation angle.
• The exponents m and n are real numbers greater than or equal to zero.

The response is defined for azimuth and elevation angles between –90° and 90°, inclusive,
and is always positive. There is no response at the backside of a cosine antenna. The
cosine response pattern achieves a maximum value of 1 at 0° azimuth and 0° elevation.
Larger exponent values narrow the response pattern of the element and increase the
directivity.

The power response (or power pattern) is the squared value of the field response.

P(az, el) = cos2m(az)cos2n(el)

When you use the cosine antenna element, you specify the exponents of the cosine
pattern using the CosinePower property and the operating frequency range of the
antenna using the FrequencyRange property.

 Cosine Antenna Element
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Concentrating Cosine Antenna Response
This example shows the effect of concentrating the cosine antenna response by increasing
the exponent of the cosine factor. The example computes and plots the cosine response
for exponents equal to 1 and 2 for a single angle between -90 and 90 degrees. The angle
can represent azimuth or elevation.

theta = -90:.01:90;
costh1 = cosd(theta);
costh2 = costh1.^2;
plot(theta,costh1)
hold on
plot(theta,costh2,'r')
hold off
legend('Exponent = 1','Exponent = 2','location','northeast');
xlabel('Angle (degrees')
ylabel('Response')
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Plot 3-D Response of Cosine Antenna Element
This example shows how to construct an antenna with a cosine-squared response in both
azimuth and elevation. The operating frequency range of the antenna is 1 to 10 GHz. Plot
the 3-D antenna response at 5 GHz.

sCos = phased.CosineAntennaElement(...
    'FrequencyRange',[1 10]*1e9,'CosinePower',[2 2]);
pattern(sCos,5e9,[-180:180],[-90:90],'CoordinateSystem',...
    'Polar','Type','powerdb')

 Cosine Antenna Element
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Custom Antenna Element
In this section...
“Support for Custom Antenna Elements” on page 1-11
“Antenna with Custom Radiation Pattern” on page 1-11

Support for Custom Antenna Elements
The phased.CustomAntennaElement object enables you to model a custom antenna
element. When you use phased.CustomAntennaElement, you must specify these
aspects of the antenna:

• Operating frequency vector for the antenna element
• Frequency response of the element at the frequencies in the operating frequency

vector
• Azimuth angles and elevation angles where the custom response is evaluated
• Magnitude radiation pattern. This pattern shows the spatial response of the antenna at

the azimuth and elevation angles you specify.

Tip You can import a radiation pattern that uses u/v coordinates or φ/θ angles, instead
of azimuth/elevation angles. To use such a pattern with
phased.CustomAntennaElement, first convert your pattern to azimuth/elevation
form. Use uv2azelpat or phitheta2azelpat to do the conversion. For an example,
see Antenna Array Analysis with Custom Radiation Pattern.

For your custom antenna element, the antenna response depends on the frequency
response and radiation pattern. Specifically, the frequency and spatial responses are
interpolated separately using nearest-neighbor interpolation and then multiplied together
to produce the total response. To avoid interpolation errors, the range of azimuth angles
should include +/– 180 degrees and the range of elevation angles should include +/– 90
degrees.

Antenna with Custom Radiation Pattern
Create a custom antenna element object. The radiation pattern has a cosine dependence
on elevation angle but is independent of azimuth angle.

 Custom Antenna Element
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az = -180:90:180;
el = -90:45:90;
elresp = cosd(el);
magpattern = mag2db(repmat(elresp',1,numel(az)));
phasepattern = zeros(size(magpattern));
antenna = phased.CustomAntennaElement('AzimuthAngles',az,...
    'ElevationAngles',el,'MagnitudePattern',magpattern, ...
    'PhasePattern',phasepattern);

Display the radiation pattern.

disp(antenna.MagnitudePattern)

      -Inf      -Inf      -Inf      -Inf      -Inf
   -3.0103   -3.0103   -3.0103   -3.0103   -3.0103
         0         0         0         0         0
   -3.0103   -3.0103   -3.0103   -3.0103   -3.0103
      -Inf      -Inf      -Inf      -Inf      -Inf

Calculate the antenna response at the azimuth-elevation pairs (-30,0) and (-45,0) at 500
MHz.

ang = [-30 0; -45 0];
resp = antenna(500.0e6,ang);
disp(resp)

    0.7071
    1.0000

The following code illustrates how nearest-neighbor interpolation is used to find the
antenna voltage response in the two directions. The total response is the product of the
angular response and the frequency response.

g = interp2(deg2rad(antenna.AzimuthAngles),...
    deg2rad(antenna.ElevationAngles),...
    db2mag(antenna.MagnitudePattern),...
    deg2rad(ang(1,:))', deg2rad(ang(2,:))','nearest',0);
h = interp1(antenna.FrequencyVector,...
    db2mag(antenna.FrequencyResponse),500e6,'nearest',0);
antresp = h.*g;

Compare the value of antresp to the response of the antenna.

disp(mag2db(antresp))
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   -3.0103
         0
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Omnidirectional Microphone
In this section...
“Support for Omnidirectional Microphones” on page 1-14
“Backbaffled Omnidirectional Microphone” on page 1-14

Support for Omnidirectional Microphones
An omnidirectional microphone has a response which is equal to one in all nonbaffled
directions. The phased.OmnidirectionalMicrophoneElement object enables you to
model an omnidirectional microphone. When you use this object, you must specify these
aspects of the microphone:

• The operating frequency range of the microphone using the FrequencyRange
property.

• Whether the response of the microphone is baffled at azimuth angles outside the
interval [–90,90] degrees using the BackBaffled property.

Backbaffled Omnidirectional Microphone
Construct an omnidirectional microphone element having a response within the human
audible frequency range of 20 to 20,000 Hz. Baffle the microphone response for azimuth
angles outside of +/- 90 degrees. Plot in polar form the microphone power response at 1
kHz.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

freq = 1e3;
microphone = phased.OmnidirectionalMicrophoneElement(...
    'BackBaffled',true,'FrequencyRange',[20 20e3]);
pattern(microphone,freq,[-180:180],[-90:90],'CoordinateSystem','polar','Type','power');
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In many applications, you sometimes need to examine the microphone directionality, or
polar pattern. To obtain an azimuth cut, set the elevation argument of the pattern
method to a single angle such as zero.

pattern(microphone,freq,[-180:180],0,'CoordinateSystem','polar','Type','power');

 Omnidirectional Microphone
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To obtain an elevation cut, set the azimuth argument of the pattern method to a single
angle such as zero.

pattern(microphone,freq,0,[-90:90],'CoordinateSystem','polar','Type','power');

1 Antenna and Microphone Elements
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Obtain the microphone magnitude response at the specified azimuth angles and
frequencies. By default, when the ang argument is a single row, the elevation angles are 0
degrees. Note the response is unity at all azimuth angles and frequencies, as expected.

freqs = [100:250:1e3];
ang = [-90:30:90];
response = microphone(freqs,ang)

response = 7×4

     1     1     1     1
     1     1     1     1
     1     1     1     1
     1     1     1     1

 Omnidirectional Microphone

1-17



     1     1     1     1
     1     1     1     1
     1     1     1     1
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Custom Microphone Element

In this section...
“Support for Custom Microphone Elements” on page 1-19
“Custom Cardioid Microphone Pattern” on page 1-19

Support for Custom Microphone Elements
You can model a microphone with a custom response pattern using
phased.CustomMicrophoneElement System object. The total response of a custom
microphone element is a combination of its frequency response and spatial response.
phased.CustomMicrophoneElement calculates both responses using nearest neighbor
interpolation and then multiplies them to form the total response. When the
PolarPatternFrequencies property value is nonscalar, the object specifies multiple
polar patterns. In this case, the interpolation uses the polar pattern that is measured
closest to the specified frequency. When you use phased.CustomMicrophoneElement,
you must specify these microphone attributes.:

• Frequencies where you specify your response using the FrequencyVector property.
• Response corresponding to the specified frequencies using the FrequencyResponse

property.
• Frequencies and angles at which the microphone’s polar pattern is measured.
• Magnitude response of the microphone.

Custom Cardioid Microphone Pattern
Create a custom cardioid microphone, and plot the power response pattern at 500 and
800 Hz.

sCustMic = phased.CustomMicrophoneElement;
sCustMic.PolarPatternFrequencies = [500 1000];
sCustMic.PolarPattern = mag2db([...
    0.5+0.5*cosd(sCustMic.PolarPatternAngles);...
    0.6+0.4*cosd(sCustMic.PolarPatternAngles)]);

pattern(sCustMic,[500,800],[-180:180],0,'Type','powerdb')

 Custom Microphone Element
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See Also

Related Examples
• “Microphone ULA Array” on page 2-11
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Short-dipole Antenna Element
When you want to explicitly study the effects of polarization in a radar or communication
system, you need to specify an antenna that can generate polarized radiation. One such
antenna is the short-dipole antenna, created by using the
phased.ShortDipoleAntennaElement.

The simplest polarized antenna is the dipole antenna which consist of a split length of
wire coupled at the middle to a coaxial cable. The simplest dipole, from a mathematical
perspective, is the Hertzian dipole, in which the length of wire is much shorter than a
wavelength. A diagram of the short dipole antenna of length L appears in the next figure.
This antenna is fed by a coaxial feed which splits into two equal length wires of length
L/2. The current, I, moves along the z-axis and is assumed to be the same at all points in
the wire.

 Short-dipole Antenna Element
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The electric field in the far field has the form

Er = 0
EH = 0

EV = −
iZ0IL

2λ cosel e−ikr

r

The next example computes the vertical and horizontal polarization components of the
field. The vertical component is a function of elevation angle and is axially symmetric. The
horizontal component vanishes everywhere.
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Short-Dipole Polarization Components
Compute the vertical and horizontal polarization components of the field created by a
short-dipole antenna pointed along the z-direction. Plot the components as a function of
elevation angle from 0° to 360°.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Create the phased.ShortDipoleAntennaElement System object™.

antenna = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[1,2]*1e9,'AxisDirection','Z');

Compute the antenna response. Because the elevation angle argument to antenna is
restricted to ±90°, compute the responses for 0° azimuth and then for 180° azimuth.
Combine the two responses in the plot. The operating frequency of the antenna is 1.5
GHz.

el = [-90:90];
az = zeros(size(el));
fc = 1.5e9;
resp = antenna(fc,[az;el]);
az = 180.0*ones(size(el));
resp1 = antenna(fc,[az;el]);

Overlay the responses in the same figure.

figure(1)
subplot(121)
polar(el*pi/180.0,abs(resp.V.'),'b')
hold on
polar((el+180)*pi/180.0,abs(resp1.V.'),'b')
str = sprintf('%s\n%s','Vertical Polarization','vs Elevation Angle');
title(str)
hold off
subplot(122)
polar(el*pi/180.0,abs(resp.H.'),'b')
hold on
polar((el+180)*pi/180.0,abs(resp1.H.'),'b')
str = sprintf('%s\n%s','Horizontal Polarization','vs Elevation Angle');
title(str)
hold off
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The plot shows that the horizontal component vanishes, as expected.
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Crossed-dipole Antenna Element
Another antenna that produces polarized radiation is the crossed-dipole antenna, created
by using the phased.CrossedDipoleAntennaElement System object.

You can use a cross-dipole antenna to generate circularly-polarized radiation. The
crossed-dipole antenna consists of two identical but orthogonal short-dipole antennas that
are phased 90° apart. A diagram of the crossed dipole antenna appears in the following
figure. The electric field created by a crossed-dipole antenna constructed from a y-
directed short dipole and a z-directed short dipole has the form

Er = 0

EH = −
iZ0IL

2λ cosaz e−ikr

r

EV =
iZ0IL

2λ (sinelsinaz + icosel)e−ikr

r

The polarization ratio EV/EH, when evaluated along the x-axis, is just –i which means that
the polarization is exactly RHCP along the x-axis. It is predominantly RHCP when the
observation point is close to the x-axis. Moving away from the x-axis, the field becomes a
mixture of LHCP and RHCP polarizations. Along the –x-axis, the field is LHCP polarized.
The figure illustrates, for a point near the x, that the field is primarily RHCP.

 Crossed-dipole Antenna Element
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LHCP and RHCP Polarization Components
This example plots the right-hand and left-hand circular polarization components of fields
generated by a crossed-dipole antenna at 1.5 GHz. You can see how the circular
polarization changes from pure RHCP at 0 degrees azimuth angle to pure LHCP at 180
degrees azimuth angle, both at 0 degrees elevation angle.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Create the phased.CrossedDipoleAntennaElement object.
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fc = 1.5e9;
antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[1,2]*1e9);

Compute the left-handed and right-handed circular polarization components from the
antenna response.

az = [-180:180];
el = zeros(size(az));
resp = antenna(fc,[az;el]);
cfv = pol2circpol([resp.H.';resp.V.']);
clhp = cfv(1,:);
crhp = cfv(2,:);

Plot both circular polarization components at 0 degrees elevation.

polar(az*pi/180.0,abs(clhp))
hold on
polar(az*pi/180.0,abs(crhp))
title('LHCP and RHCP vs Azithmuth Angle')
legend('LHCP','RHCP')
hold off

 Crossed-dipole Antenna Element
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Using Antenna Toolbox with Phased Array Systems
When you create antenna arrays such as a uniform linear array (ULA), you can use
antennas that are built into Phased Array System Toolbox™. Alternatively, you can use
Antenna Toolbox™ antennas. Antenna Toolbox antennas provide realistic models of
physical antennas. They are designed using method of moments. Phased array antennas
represent more idealized antennas that are useful for radar performance analysis and
higher level modelling. Some phased array antennas cannot be physically realized, such
as the isotropic antenna but are still conceptually useful. You can build and analyze
systems using both types of antennas in an identical manner. This example shows how to
construct a phased array with either Phased Array System Toolbox or Antenna Toolbox™
antennas.

When you use an Antenna Toolbox™ antenna in a Phased Array System Toolbox™ System
Object™, the antenna response will be normalized by the maximum value of the antenna
output over all directions. The maximum value is obtained by finding the maximum of the
antenna pattern sampled every five degrees in azimuth and elevation.

Construct ULA of Crossed-Dipole Antennas from Phased Array System Toolbox

Start by creating a uniform linear array (ULA) of crossed-dipole antennas from Phased
Array System Toolbox. Crossed-dipole antennas are used to produce circularly-polarized
signals. In this case, set the operating frequency to 2 GHZ and draw the power pattern.
Use the pattern method of the phased.CrossedDipoleAntennaElement System
object™.

fc = 2.0e9;
crosseddipoleantenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[500,2500]*1e6);
pattern(crosseddipoleantenna,fc,[-180:180],0,...
    'Type','powerdb')

 Using Antenna Toolbox with Phased Array Systems
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The main axis of this antenna points along the x-axis.

Then, create an 11-element ULA array of crossed-dipole antennas. Specify the element
spacing to be 0.4 wavelengths. Taper the array using a Taylor window. Then, draw the
array pattern as a function of azimuth at 0 degrees elevation. Use the pattern method of
the phased.ULA System object.

c = physconst('LightSpeed');
elemspacing = 0.4*c/fc;
nElements = 11;
array1 = phased.ULA('Element',crosseddipoleantenna,'NumElements',nElements,...
    'ElementSpacing',elemspacing,'Taper',taylorwin(nElements)');
pattern(array1,fc,[-180:180],0,'PropagationSpeed',c,...
        'Type','powerdb')
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Construct ULA of Helix Antennas from Antenna Toolbox

Next, create a uniform linear array (ULA) using the helix antenna from Antenna Toolbox.
Helix antennas also produce circularly polarized radiation. Helix antennas are created
using the helix function.

First, specify a 4-turn helix antenna having a 28.0 mm radius and 1.2 mm width. The
TiltAxis and Tilt properties let you orient the antenna with respect to the local
coordinate system. In this example, orient the main response axis (MRA) along the x -axis
to coincide with the MRA of the cross-dipole main axis. By default, the MRA of the
antenna points in the z -direction. Rotate the MRA around the y -axis by 90 degrees.

radius = 0.028;
width = 1.2e-3;
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nturns = 4;
helixantenna = helix('Radius',radius,'Width',width,'Turns',nturns,...
    'TiltAxis',[0,1,0],'Tilt',90);

You can view the shape of the helix antenna use the show function from Antenna Toolbox.

show(helixantenna)

Then, draw the azimuth antenna pattern at 0 degrees elevation at the operating
frequency of 2 GHz. Use the pattern function from Antenna Toolbox.

pattern(helixantenna,fc,[-180:180],0,...
    'Type','powerdb')
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Next, construct an 11-element tapered uniform linear array of helix antennas with
elements spaced at 0.4 wavelengths. Taper the array with a Taylor window. You can use
the same phased.ULA System object from Phased Array System Toolbox to create this
array.

array2 = phased.ULA('Element',helixantenna,'NumElements',nElements,...
    'ElementSpacing',elemspacing,'Taper',taylorwin(nElements)');

Plot the array pattern as a function of azimuth using the ULA pattern method which has
the same syntax as the Antenna Toolbox pattern function.

pattern(array2,fc,[-180:180],0,'PropagationSpeed',c,...
        'Type','powerdb')

 Using Antenna Toolbox with Phased Array Systems

1-33



Compare Patterns

Comparing the two array patterns shows that they are similar along the mainlobe. The
backlobe of the helix antenna array pattern is almost 15 dB smaller than that of the
crossed-dipole array. This is due to the presence of the ground plane of the helix antenna
which reduces backlobe transmission.
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Array Geometries and Analysis

• “Uniform Linear Array” on page 2-2
• “Microphone ULA Array” on page 2-11
• “Uniform Rectangular Array” on page 2-14
• “Conformal Array” on page 2-18
• “Subarrays Within Arrays” on page 2-25
• “Plot Array Directivity Using Sensor Array Analyzer App” on page 2-34
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Uniform Linear Array
In this section...
“Support for Uniform Linear Arrays” on page 2-2
“Positions of ULA Array Elements” on page 2-2
“ULA Array Elements” on page 2-4
“Array Element Responses” on page 2-4
“Signal Delay Between Array Elements” on page 2-4
“Steering Vector” on page 2-6
“Array Response” on page 2-7
“Reception of Plane Wave Across Array” on page 2-9

Support for Uniform Linear Arrays
The uniform linear array (ULA) arranges identical sensor elements along a line in space
with uniform spacing. You can design a ULA with phased.ULA. When you use this object,
you must specify these aspects of the array:

• Sensor elements of the array
• Spacing between array elements
• Number of elements in the array

Positions of ULA Array Elements
Create and view a ULA having four isotropic antenna elements separated by 0.5 meters

array = phased.ULA('NumElements',4,'ElementSpacing',0.5);
viewArray(array);
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You can return the coordinates of the array sensor elements in the form [x;y;z] by
using the getElementPosition method. See “Rectangular Coordinates” on page 10-2
for toolbox conventions.

sensorpos = getElementPosition(array);

sensorpos is a 3-by-4 matrix with each column representing the position of a sensor
element. Note that the y-axis is the array axis. The positive x-axis is the array look
direction (0 degrees broadside). The elements are symmetric with the respect to the
phase center of the array.
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ULA Array Elements
The default element for a ULA is the phased.IsotropicAntennaElement object. You
can specify a different element using the Element property.

Array Element Responses
Obtain the responses of the elements of a 4-element ULA array at 1 GHz.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Specify isotopic antennas for the array elements. Then, specify a 4-element ULA. Obtain
the response by executing the System object™.

antenna = phased.IsotropicAntennaElement(...
    'FrequencyRange',[3e8 1e9]);
array = phased.ULA('NumElements',4,'ElementSpacing',0.5,...
    'Element',antenna);
freq = 1e9;
azangles = -180:180;
response = array(freq,azangles);

response is a 4-by-361 matrix where each column contains the responses at each
azimuth angle. Matrix rows correspond to the four elements. Because the elements of the
ULA are isotropic antennas, response is a matrix of ones.

Signal Delay Between Array Elements
This example computes the delay between elements of a 4-element ULA using the
phased.ElementDelay System object™. Assume that the incident waveform satisfies
the far-field condition. The delays are computed with respect to the phase center of the
array. By default, phased.ElementDelay assumes that the incident waveform is an
electromagnetic wave propagating at the speed of light.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).
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Construct 4-element ULA using value-only syntax and compute the delay for a signal
incident on the array from -90° azimuth and 0° elevation. Delay units are in seconds.

array = phased.ULA(4);
delay = phased.ElementDelay('SensorArray',array);
tau = delay([-90;0])

tau = 4×1
10-8 ×

   -0.2502
   -0.0834
    0.0834
    0.2502

tau is a 4-by-1 vector of delays with respect to the phase center of the array, which is the
origin of the local coordinate system (0;0;0). See “Global and Local Coordinate Systems”
on page 10-21 for a description of global and local coordinate systems. Negative delays
indicate that the signal arrives at an element before reaching the phase center of the
array. Because the waveform arrives from an azimuth angle of -90°, the signal arrives at
the first and second elements of the ULA before it reaches the phase center resulting in
negative delays for these elements.

If the signal is incident on the array at 0° broadside from a far-field source, the signal
illuminates all elements of the array simultaneously resulting in zero delay.

tau = delay([0;0])

tau = 4×1

     0
     0
     0
     0

If the incident signal is an acoustic pressure waveform propagating at the speed of sound,
you can calculate the element delays by setting the PropagationSpeed property to 340
m/s. This value is a typical speed of sound at sea level.

delay = phased.ElementDelay('SensorArray',array,...
    'PropagationSpeed',340);
tau = delay([90;0])
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tau = 4×1

    0.0022
    0.0007
   -0.0007
   -0.0022

Steering Vector
The steering vector represents the relative phase shifts for the incident far-field waveform
across the array elements. You can determine these phase shifts with the
phased.SteeringVector object.

For a single carrier frequency, the steering vector for a ULA consisting of N elements is:

e− j2πfτ1

e− j2πfτ2

e− j2πfτ3

.

.

.

e− j2πfτN

where τn denotes the time delay relative to the array phase center at the n-th array
element.

Compute ULA Steering Vector

Compute the steering vector for a 4-element ULA at an operating frequency of 1 GHz.
Assume that the waveform is incident on the array from 45° azimuth and 10° elevation.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

fc = 1e9;
array = phased.ULA(4);
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steervec = phased.SteeringVector('SensorArray',array);
sv = steervec(fc,[45;10])

sv = 4×1 complex

  -0.0495 + 0.9988i
  -0.8742 + 0.4856i
  -0.8742 - 0.4856i
  -0.0495 - 0.9988i

You can also compute the steering vector with the following equivalent code.

delay = phased.ElementDelay('SensorArray',array);
tau = delay([45;10]);
exp(-1i*2*pi*fc*tau)

ans = 4×1 complex

  -0.0495 + 0.9988i
  -0.8742 + 0.4856i
  -0.8742 - 0.4856i
  -0.0495 - 0.9988i

Array Response
To obtain the array response, which is a weighted-combination of the steering vector
elements for each incident angle, use the phased.ArrayResponse System object.

ULA Array Response

Construct a four-element ULA with elements spaced at 0.25 m. Obtain the array
magnitude response (absolute value of the complex-valued array response) for azimuth
angles (-180:180) at 1 GHz. Then, plot the normalized magnitude response in dB.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

fc = 1e9;
array = phased.ULA('NumElements',4,'ElementSpacing',0.25);
azangles = -180:180;
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response = phased.ArrayResponse('SensorArray',array);
resp = abs(response(fc,azangles));
plot(azangles,mag2db((resp/max(resp))))
grid on
title('Azimuth Cut at Zero Degrees Elevation')
xlabel('Azimuth Angle (degrees)')

Visualize the array response using the pattern method. Create a 3-D plot of the
response in UV space; other plotting options are available.

pattern(array,fc,[-1:.01:1],[-1:.01:1],'CoordinateSystem','uv',...
    'PropagationSpeed',physconst('Lightspeed'))
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Reception of Plane Wave Across Array
You can simulate the effects of phase shifts across your array using the
collectPlaneWave method of any array System object.

The collectPlaneWave method modulates input signals by the element of the steering
vector corresponding to an array element. Stated differently, collectPlaneWave
accounts for phase shifts across elements in the array based on the angle of arrival.
However, collectPlaneWave does not account for the response of individual elements
in the array.
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Plane-Wave Reception Across ULA

Simulate the reception of a 100-Hz sine wave modulated by a carrier frequency of 1 GHz
at a 4-element ULA. Assume the angle of arrival of the signal is (-90;0).

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

array = phased.ULA(4);
t = unigrid(0,0.001,0.01,'[)');
x = cos(2*pi*100*t)';
y = collectPlaneWave(array,x,[-90;0],1e9,physconst('LightSpeed'));

The preceding code is equivalent to the following.

steervec = phased.SteeringVector('SensorArray',array);
sv = steervec(1e9,[-90;0]);
y1 = x*sv.';

See Also

Related Examples
• “Microphone ULA Array” on page 2-11
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Microphone ULA Array
This example shows how to construct and visualize a four-element ULA with custom
cardioid microphone elements. Specify the polar pattern frequencies as 500 and 1000 Hz.

Create a microphone element with a cardioid response pattern. Use the default values of
the FrequencyVector property.

freq = [500 1000];
microphone = phased.CustomMicrophoneElement(...
    'PolarPatternFrequencies',freq);
microphone.PolarPattern= mag2db([...
    0.5+0.5*cosd(microphone.PolarPatternAngles);...
    0.6+0.4*cosd(microphone.PolarPatternAngles)]);

Plot the polar pattern of the microphone at 0.5 kHz and 1 kHz.

pattern(microphone,freq,[-180:180],0,'CoordinateSystem','polar','Type','powerdb',...
    'Normalize',true);
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Construct a ULA of custom microphone elements.

array = phased.ULA('NumElements',4,'ElementSpacing',0.5,...
    'Element',microphone);

Plot the response of the array at 0.5 kHz and 1 kHz.

pattern(array,freq,[-180:180],0,'CoordinateSystem','polar','Type','powerdb',...
    'Normalize',true,'PropagationSpeed',340.0);
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Uniform Rectangular Array
In this section...
“Support for Uniform Rectangular Arrays” on page 2-14
“Uniform Rectangular Array of Isotropic Antenna Elements” on page 2-14

Support for Uniform Rectangular Arrays
You can implement a uniform rectangular array (URA) with phased.URA. Array elements
are distributed in the yz-plane with the array look direction along the positive x-axis.
When you use phased.URA, you must specify these aspects of the array:

• Sensor elements of the array
• Number of rows and the spacing between them
• Number of columns and the spacing between them
• Geometry of the planar lattice, which can be rectangular or triangular

Uniform Rectangular Array of Isotropic Antenna Elements
This example shows you how to create a uniform rectangular array (URA) and obtain
information about the element positions, the array response, and inter-element time
delays. Then, simulate the reception of two sine waves coming from different directions.
Both signals have a 1GHz carrier frequency.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Create the URA and obtain the element positions

Create and view a six-element URA with two elements along the y-axis and three elements
along the z-axis. Use a rectangular lattice, with the default spacing of 0.5 meters along
both the row and column dimensions of the array. Each element is an isotropic antenna
element, which is the default element type for a URA.

fc = 1e9;
array = phased.URA([3,2]);
viewArray(array)
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pos = getElementPosition(array);

The x-coordinate is zero for all elements of the array.

Compute the element delays

Calculate the element delays for signals arriving from +45° and -45° azimuth and 0°
elevation.

delay = phased.ElementDelay('SensorArray',array);
ang = [45,-45];
tau = delay(ang);
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The first column of tau contains the element delays for the signal incident on the array
from +45° azimuth. The second column contains the delays for the signal arriving from
-45°. The delays are equal in magnitude but opposite in sign, as expected.

Compute the received signals

The following code simulates the reception of two sinusoidal waves arriving from far field
sources. One signal is a 100-Hz sine wave arriving from 20° azimuth and 10° elevation.
The second signal is a 300-Hz sine wave arriving from -30° azimuth and 5° elevation.

t = linspace(0,1,1000);
x1 = cos(2*pi*100*t)';
x2 = cos(2*pi*300*t)';
ang1 = [20;10];
ang2 = [-30;5];
recsig = collectPlaneWave(array,[x1 x2],[ang1 ang2],fc);

Each column of recsig represents the received signals at the corresponding element of
the URA.

Plot the array response in 3D

You can plot the array response using the pattern method.

pattern(array,fc,[-180:180],[-90:90],'PropagationSpeed',physconst('LightSpeed'),...
    'CoordinateSystem','rectangular','Type','powerdb')
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Conformal Array
In this section...
“Support for Arrays with Custom Geometry” on page 2-18
“Create Default Conformal Array” on page 2-18
“Uniform Circular Array Created from Conformal Array” on page 2-19
“Custom Antenna Array” on page 2-21

Support for Arrays with Custom Geometry
The phased.ConformalArray object lets you model a phased array with arbitrary
geometry. For example, you can use phased.ConformalArray to design:

• A planar array with a nonrectangular geometry, such as a circular array
• An array with nonuniform geometry, such as a linear array with variable spacing
• A nonplanar array

When you use phased.ConformalArray, you must specify these aspects of the array:

• Sensor element of the array
• Element positions
• Direction normal to each array element

Create Default Conformal Array
To create a conformal array with default properties, use this command:

array = phased.ConformalArray

array = 
  phased.ConformalArray with properties:

            Element: [1x1 phased.IsotropicAntennaElement]
    ElementPosition: [3x1 double]
      ElementNormal: [2x1 double]
              Taper: 1
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This default conformal array consists of a single phased.IsotropicAntennaElement
antenna located at the origin of the local coordinate system. The direction normal to the
sensor element is 0° azimuth and 0° elevation.

Uniform Circular Array Created from Conformal Array
This example shows how to construct a 60-element uniform circular array. In constructing
a uniform circular array, you can use either the phased.UCA or the
phased.ConformalArray System objects. The conformal array approach is more
general because it allows you to point the array elements in arbitrary directions. A UCA
restricts the array element directions to lie in the plane of the array. This example
illustrates how you can use the phased.ConformalArray System object to create any
other array shape. Assume an operating frequency of 400 MHz. Tune the array by
specifying the arclength between the elements to be 0.5λ where λ is the wavelength
corresponding to the operating frequency. Array elements lie in the x-y-plane. Element
normal directions are set to (ϕn, 0) where ϕn is the azimuth angle of the nth array element.

Set the number of elements and the operating frequency of the array.

N = 60;
fc = 400e6;

Compute the element spacing in radians.

theta = 360/N;
thetarad = deg2rad(theta);

Choose the radius so that the inter-element arclength is one-half wavelength.

arclength = 0.5*(physconst('LightSpeed')/fc);
radius = arclength/thetarad;

Compute the element azimuth angles. Azimuth angles must lie in the range
(− 180∘, 180∘).

ang = (0:N-1)*theta;
ang(ang >= 180.0) = ang(ang >= 180.0) - 360.0;
array = phased.ConformalArray;
array.ElementPosition = [radius*cosd(ang);...
    radius*sind(ang);...
    zeros(1,N)];
array.ElementNormal = [ang;zeros(1,N)];
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Show the UCA array geometry.

viewArray(array)

Plot the array response pattern at 1 GHz.

pattern(array,1e9,[-180:180],0,'PropagationSpeed',physconst('LightSpeed'),...
    'CoordinateSystem','polar','Type','powerdb','Normalize',true)
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Custom Antenna Array
This example shows how to construct and visualize a custom-geometry array containing
antenna elements with a custom radiation pattern. The radiation pattern of each element
is constant over each azimuth angle and has a cosine pattern for the elevation angles.

Define the custom antenna element and plot its radiation pattern.

az = -180:180;
el = -90:90;
fc = 3e8;
elresp = cosd(el);
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antenna = phased.CustomAntennaElement('AzimuthAngles',az,...
    'ElevationAngles',el,...
    'MagnitudePattern',repmat(elresp',1,numel(az)));
pattern(antenna,3e8,0,el,'CoordinateSystem','polar','Type','powerdb',...
    'Normalize',true);

Define the locations and normal directions of the elements. All elements lie in the z-plane.
The elements are located at (1;0;0) , (0;1;0), and (0;-1;0) meters. The element normal
azimuth angles are 0°, 120°, and -120°, respectively. All normal elevation angles are 0°.

xpos = [1 0 0];
ypos = [0 1 -1];
zpos = [0 0 0];
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normal_az = [0 120 -120];
normal_el = [0 0 0];

Define a conformal array with those elements.

array = phased.ConformalArray('Element',antenna,...
   'ElementPosition',[xpos; ypos; zpos],...
   'ElementNormal',[normal_az; normal_el]);

Plot the positions and normal directions of the elements.

viewArray(array,'ShowNormals',true)
view(0,90)
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pattern(array,fc,az,el,'CoordinateSystem','polar','Type','powerdb',...
    'Normalize',true,'PropagationSpeed',physconst('LightSpeed'))
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Subarrays Within Arrays
In this section...
“Definition of Subarrays” on page 2-25
“Benefits of Using Subarrays” on page 2-25
“Support for Subarrays Within Arrays” on page 2-25
“Rectangular Array Partitioned into Linear Subarrays” on page 2-26
“Linear Subarray Replicated to Form Rectangular Array” on page 2-30
“Linear Subarray Replicated in a Custom Grid” on page 2-31

Definition of Subarrays
In Phased Array System Toolbox software, a subarray is an accessible subset of array
elements. When you use an array that contains subarrays, you can access measurements
from the subarrays but not from the individual elements. Similarly, you can perform
processing at the subarray level but not at the level of the individual elements. As a
result, the system has fewer degrees of freedom than if you controlled the system at the
level of the individual elements.

Benefits of Using Subarrays
Radar applications often use subarrays because operations, such as phase shifting and
analog-to-digital conversion, are too expensive to implement for each element. It is less
expensive to group the elements of an array through hardware, thus creating subarrays
within the array. Grouping elements through hardware limits access to measurements and
processing to the subarray level.

Support for Subarrays Within Arrays
To work with subarrays, you must define the array and the subarrays within it. You can
either define the array first or begin with the subarray. Choose one of these approaches:

• Define one subarray, and then build a larger array by arranging copies of the subarray.
The subarray can be a ULA, URA, or conformal array. The copies are identical, except
for their location and orientation. You can arrange the copies spatially in a grid or a
custom layout.
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When you use this approach, you build the large array by creating a
phased.ReplicatedSubarray System object. This object stores information about
the subarray and how the copies of it are arranged to form the larger array.

• Define an array, and then partition it into subarrays. The array can be a ULA, URA, or
conformal array. The subarrays do not need to be identical. A given array element can
be in more than one subarray, leading to overlapped subarrays.

When you use this approach, you partition your array by creating a
phased.PartitionedArray System object. This object stores information about the
array and its subarray structure.

After you create a phased.ReplicatedSubarray or phased.PartitionedArray
object, you can use it to perform beamforming, steering, or other operations. To do so,
specify your object as the value of the SensorArray or Sensor property in objects that
have such a property and that support subarrays. Objects that support subarrays in their
SensorArray or Sensor property include:

• phased.AngleDopplerResponse
• phased.ArrayGain
• phased.ArrayResponse
• phased.Collector
• phased.ConstantGammaClutter
• phased.MVDRBeamformer
• phased.PhaseShiftBeamformer
• phased.Radiator
• phased.STAPSMIBeamformer
• phased.SteeringVector
• phased.SubbandPhaseShiftBeamformer
• phased.WidebandCollector

Rectangular Array Partitioned into Linear Subarrays
This example shows how to set up a rectangular array containing linear subarrays. The
example also finds the phase centers of the subarrays.

Create a 2-by-3 rectangular array.
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array = phased.URA('Size',[2 3]);

Plot the positions of the array elements in the yz-plane (all x-coordinates are zero.)
Include labels that indicate the numbering of the elements. The numbering is important
for selecting which elements are included in each subarray.

viewArray(array,'ShowIndex','All')

Create and view an array consisting of three 2-element linear subarrays each parallel to
the z-axis. Use the indices from the plot to form the matrix for the SubarraySelection
property. The getSubarrayPosition method returns the phase centers of the three
subarrays.
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subarray1 = [1 1 0 0 0 0; 0 0 1 1 0 0; 0 0 0 0 1 1];
partitionedarray1 = phased.PartitionedArray('Array',array,...
   'SubarraySelection',subarray1);
viewArray(partitionedarray1)

subarray1pos = getSubarrayPosition(partitionedarray1)

subarray1pos = 3×3

         0         0         0
   -0.5000         0    0.5000
         0         0         0
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Create and view another array consisting of two 3-element linear subarrays parallel to the
y-axis. Using the getSubarrayPosition method, find the phase centers of the two
subarrays.

subarray2 = [0 1 0 1 0 1; 1 0 1 0 1 0];
partitionedarray2 = phased.PartitionedArray('Array',array,...
   'SubarraySelection',subarray2);
viewArray(partitionedarray2)

subarraypos2 = getSubarrayPosition(partitionedarray2)

subarraypos2 = 3×2

         0         0
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         0         0
   -0.2500    0.2500

Linear Subarray Replicated to Form Rectangular Array
This example shows how to arrange copies of a linear subarray to form a rectangular
array.

Create a 4-element linear array parallel to the y-axis.

array = phased.ULA('NumElements',4);

Create a rectangular array by arranging two copies of the linear array.

replsubarray = phased.ReplicatedSubarray('Subarray',array,'GridSize',[2 1]);

Plot the positions of the array elements (filled circles) and the phase centers of the
subarrays (unfilled circles). The elements lie in the yz-plane because all the x-coordinates
are zero.

viewArray(replsubarray);
hold on;
subarraypos = getSubarrayPosition(replsubarray);
sx = subarraypos(1,:);
sy = subarraypos(2,:);
sz = subarraypos(3,:);
scatter3(sx,sy,sz,'ro')
hold off
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Linear Subarray Replicated in a Custom Grid
This example shows how to arrange copies of a linear subarray in a triangular layout.

Create a 4-element linear array.

antenna = phased.CosineAntennaElement('CosinePower',1);
array = phased.ULA('NumElements',4,'Element',antenna);

Create a larger array by arranging three copies of the linear array. Define the phase
centers and normal directions of the three copies explicitly.
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vertex_ang = [60 180 -60];
vertex = 2*[cosd(vertex_ang); sind(vertex_ang); zeros(1,3)];
subarray_pos = 1/2*[...
   (vertex(:,1)+vertex(:,2)) ...
   (vertex(:,2)+vertex(:,3)) ...
   (vertex(:,3)+vertex(:,1))];
replsubarray = phased.ReplicatedSubarray('Subarray',array,...
   'Layout','Custom',...
   'SubarrayPosition',subarray_pos,...
   'SubarrayNormal',[120 0;-120 0;0 0].');

Plot the positions of the array elements (blue) and the phase centers (red) of the
subarrays. The plot is in the xy-plane because all the z-coordinates are zero.

viewArray(replsubarray,'ShowSubarray',[])
hold on
scatter3(subarray_pos(1,:),subarray_pos(2,:),...
   subarray_pos(3,:),'ro')
hold off
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See Also

Related Examples
• Subarrays in Phased Array Antennas
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Plot Array Directivity Using Sensor Array Analyzer App
The sensorArrayAnalyzer app lets you examine important properties of a phased
array such as its shape and directivity.

Open sensorArrayAnalyzer App

When you type sensorArrayAnalyzer from the command line or select the app from
the App Toolstrip, an interactive window opens. The default window shows the geometry
of a 4-element uniform linear array. You can then select various options to analyze
different arrays, other element types, geometry, and directivity.
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Create 3D Directivity Plot of 4-by-4 URA

As an example, use the app to create a 4-by-4 uniform rectangular array of cosine
antenna elements and then show the array directivity. Space the elements 0.4
wavelengths apart.

1 Set the Array to URA.
2 Set the Element to Cosine.
3 Set Cosine Power to [2 2].
4 Set the Size of the array to [4 4].
5 Set the Element Spacing to [0.4 0.4]. Set the element spacing units to

wavelength.
6 Set Propagation Speed to physconst('Lightspeed').
7 From the Steering pull down menu, set the Steer Angle to [-30,0] to steer the

array -30 degrees in azimuth.
8 In the Plot menu, select 3D Pattern.

Then, you will see a plot of array directivity similar to this.

 Plot Array Directivity Using Sensor Array Analyzer App
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Signal Radiation and Collection

• “Signal Radiation” on page 3-2
• “Signal Collection” on page 3-4
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Signal Radiation
In this section...
“Support for Modeling Signal Radiation” on page 3-2
“Radiate Signal with Uniform Linear Array” on page 3-2

Support for Modeling Signal Radiation
You can use the phased.Radiator and phased.Collector objects to model
narrowband signal radiation and collection with an array. The array can be a single
microphone or antenna element, or an array of sensor elements.

To radiate a signal from a sensor array, use phased.Radiator. When you use this object,
you must specify these aspects of the radiator:

• Whether the output of all sensor elements is combined
• Operating frequency of the array
• Propagation speed of the wave
• Sensor (single element) or sensor array
• Whether or not to apply weights to signals radiated by different elements in the array.

You apply weights, when you execute the System object.

Radiate Signal with Uniform Linear Array
Construct a radiator using a two-element ULA with elements spaced 0.5 meters apart (the
default ULA). The operating frequency is 300 MHz, the propagation speed is the speed of
light, and the element outputs are combined to simulate the far field radiation pattern.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

array = phased.ULA('NumElements',2,'ElementSpacing',0.5);
radiator = phased.Radiator('Sensor',array,...
    'OperatingFrequency',300e6,...
    'PropagationSpeed',physconst('LightSpeed'),...
    'CombineRadiatedSignals',true);
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Create a signal to radiate and propagate to the far field at an angle of (45°,0°) .

x = [1 -1 1 -1]';
y = radiator(x,[45;0]);

The far field signal results from multiplying the signal by the array pattern. The array
pattern is the product of the array element pattern and the array factor. For a uniform
linear array, the array factor is the superposition of elements in the steering vector
phased.SteeringVector.

The following code produces an identical far-field signal by explicitly using the array
factor.

array = phased.ULA('NumElements',2,'ElementSpacing',0.5);
steervec = phased.SteeringVector('SensorArray',array,...
    'IncludeElementResponse',true);
sv = steervec(300e6,[45;0]);
y1 = x*sum(sv);

Compare y1 to y.

disp(y1-y)

     0
     0
     0
     0
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Signal Collection
In this section...
“Support for Modeling Signal Collection” on page 3-4
“Narrowband Collector for Uniform Linear Array” on page 3-5
“Narrowband Collector for a Single Antenna Element” on page 3-6
“Wideband Signal Collection” on page 3-8

Support for Modeling Signal Collection
To model the collection of a signal with a sensor element or sensor array, you can use the
phased.Collector or phased.WideBandCollector. Both collector objects assume
that incident signals have propagated to the location of the array elements, but have not
been received by the array. In other words, the collector objects do not model the actual
reception by the array. See “Receiver Preamp” on page 4-40 for signal effects related to
the gain and internal noise of the array’s receiver.

In many array processing applications, the ratio of the signal’s bandwidth to the carrier
frequency is small. Expressed as a percentage, this ratio does not exceed a few percent.
Examples include radar applications where a pulse waveform is modulated by a carrier
frequency in the microwave range. These are narrowband signals. For narrowband
signals, you can express the steering vector as a function of a single frequency, the
carrier frequency. For narrowband signals, the phased.Collector object is appropriate.

In other applications, the narrowband assumption is not justified. In many acoustic and
sonar applications, the wave impinging on the array is a pressure wave that is
unmodulated. It is not possible to express the steering vector as a function of a single
frequency. In these cases, the subband approach implemented in
phased.WidebandCollector is appropriate. The wideband collector decomposes the
input into subbands and computes the steering vector for each subband.

When you use the narrowband collector, phased.Collector, you must specify these
aspects of the collector:

• Operating frequency of the array
• Propagation speed of the wave
• Sensor (single element) or sensor array
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• Type of incoming wave. Choices are 'Plane' and 'Unspecified'. If you select
'Plane', the input signals are multiple plane waves impinging on the entire array.
Each plane wave is received by all collecting elements. If you select 'Unspecified',
the input signal are individual waves impinging on individual sensors.

• Whether to apply weights to signals collected by different elements in the array. If you
want to apply weights, you specify them when you execute the System object.

When you use the wideband collector, phased.WidebandCollector, you must specify
these aspects of the collector:

• Carrier frequency
• Whether the signal is demodulated to the baseband
• Operating frequency of the array
• Propagation speed of the wave
• Sampling rate
• Sensor (single element) or sensor array
• Type of incoming wave. Choices are 'Plane' and 'Unspecified'. If you select

'Plane', the input signals are multiple plane waves impinging on the entire array.
Each plane wave is received by all collecting elements. If you select 'Unspecified',
the input signal are individual waves impinging on individual sensors.

• Whether to apply weights to signals collected by different elements in the array. If you
want to apply weights, you specify them when you execute the System object.

Narrowband Collector for Uniform Linear Array
This example shows how to construct a narrowband collector that models a plane wave
impinging on a two-element uniform linear array. The array has an element spacing of 0.5
m (default for a ULA). The operating frequency of the array is 300 MHz.

Create the array and collector System objects.

array = phased.ULA('NumElements',2,'ElementSpacing',0.5);
collector = phased.Collector('Sensor',array,...
    'PropagationSpeed',physconst('LightSpeed'),...
    'OperatingFrequency',3e8,'Wavefront','Plane');

Create the signal and simulate reception from an angle of (45;0).
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x =[1 -1 1 -1]';
y = collector(x,[45;0])

y = 4×2 complex

   0.4433 - 0.8964i   0.4433 + 0.8964i
  -0.4433 + 0.8964i  -0.4433 - 0.8964i
   0.4433 - 0.8964i   0.4433 + 0.8964i
  -0.4433 + 0.8964i  -0.4433 - 0.8964i

In the preceding case, the collector object multiplies the input signal, x, by the
corresponding element of the steering vector for the two-element ULA. The following
code produces the response in an equivalent manner. First, create the ULA and then
create the steering vector. Compare with the previous result.

array = phased.ULA('NumElements',2,'ElementSpacing',0.5);
steeringvec = phased.SteeringVector('SensorArray',array);
sv = steeringvec(3e8,[45;0]);
x =[1 -1 1 -1]';
y1 = x*sv.'

y1 = 4×2 complex

   0.4433 - 0.8964i   0.4433 + 0.8964i
  -0.4433 + 0.8964i  -0.4433 - 0.8964i
   0.4433 - 0.8964i   0.4433 + 0.8964i
  -0.4433 + 0.8964i  -0.4433 - 0.8964i

Narrowband Collector for a Single Antenna Element
The Sensor property of a phased.Collector System object™ can specify a single
antenna element. In this example, create a custom antenna element using the
phased.CustomAntennaElement System object. The antenna element has a cosine
response over elevation angles from (-90°,90°). Plot the polar pattern response of the
antenna at 1 GHz on an elevation cut at 0° azimuth. Display the antenna voltage response
at 0° azimuth and 45° elevation.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).
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fc = 1e9;
antenna = phased.CustomAntennaElement;
antenna.AzimuthAngles = -180:180;
antenna.ElevationAngles = -90:90;
antenna.MagnitudePattern = mag2db(...
    repmat(cosd(antenna.ElevationAngles)',1,numel(antenna.AzimuthAngles)));
resp = antenna(fc,[0;45])

resp = 0.7071

pattern(antenna,fc,0,[-90:90],'Type','powerdb')

The antenna voltage response at 0° azimuth and 45° elevation is cos(45°) as expected.
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Assume a narrowband sinusoidal input incident on the antenna element from 0° azimuth
and 45° elevation. Determine the signal collected at the element.

collector = phased.Collector('Sensor',antenna,'OperatingFrequency',fc);
x =[1 -1 1 -1]';
y = collector(x,[0;45])

y = 4×1

    0.7071
   -0.7071
    0.7071
   -0.7071

Wideband Signal Collection
This example shows how to simulate the reception of a wideband acoustic signal by a
single omnidirectional microphone element.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

x = randn(10,1);
c = 340.0;
microphone = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 20e3],'BackBaffled',true);
collector = phased.WidebandCollector('Sensor',microphone,...
    'PropagationSpeed',c,'SampleRate',50e3,...
    'ModulatedInput',false);
y = collector(x,[30;10]);
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Waveforms, Transmitter, and
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• “Rectangular Pulse Waveforms” on page 4-2
• “Linear Frequency Modulated Pulse Waveforms” on page 4-7
• “Stepped FM Pulse Waveforms” on page 4-16
• “FMCW Waveforms” on page 4-20
• “Phase-Coded Waveforms” on page 4-23
• “Basic Radar Using Phase-Coded Waveform” on page 4-25
• “Waveforms with Staggered PRFs” on page 4-28
• “Plot Spectrogram Using Radar Waveform Analyzer App” on page 4-30
• “Transmitter” on page 4-33
• “Receiver Preamp” on page 4-40
• “Model Coherent-on-Receive Behavior” on page 4-44
• “Radar Equation” on page 4-47
• “Display Vertical Coverage Diagram” on page 4-51
• “Compute Peak Power Using Radar Equation Calculator App” on page 4-52
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Rectangular Pulse Waveforms
In this section...
“Definition of Rectangular Pulse Waveform” on page 4-2
“How to Create Rectangular Pulse Waveforms” on page 4-2
“Rectangular Waveform Plot” on page 4-3
“Pulses of Rectangular Waveform” on page 4-4

Definition of Rectangular Pulse Waveform
Define the following function of time:

a(t) =
1 0 ≤ t ≤ τ
0 otherwise

Assume that a radar transmits a signal of the form:

x(t) = a(t)sin(ωct)

where ωc denotes the carrier frequency. Note that a(t) represents an on-off rectangular
amplitude modulation of the carrier frequency. After demodulation, the complex envelope
of x(t) is the real-valued rectangular pulse a(t) of duration τ seconds.

How to Create Rectangular Pulse Waveforms
To create a rectangular pulse waveform, use phased.RectangularWaveform. You can
customize certain characteristics of the waveform, including:

• Sampling rate
• Pulse duration
• Pulse repetition frequency
• Number of samples or pulses in each vector that represents the waveform
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Rectangular Waveform Plot
This example shows how to create a rectangular pulse waveform variable using
phased.RectangularWaveform . The example also plots the pulse and finds the
bandwidth of the pulse.

Construct a rectangular pulse waveform with a duration of 50 μs, a sample rate of 1 MHz,
and a pulse repetition frequency (PRF) of 10 kHz.

waveform = phased.RectangularWaveform('SampleRate',1e6,...
    'PulseWidth',50e-6,'PRF',10e3);

Plot a single rectangular pulse by calling plot directly on the rectangular waveform
variable. plot is a method of phased.RectangularWaveform. This method produces
an annotated graph of your pulse waveform.

plot(waveform)
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Find the bandwidth of the rectangular pulse.

bw = bandwidth(waveform)

bw = 20000

The bandwidth, bw, of a rectangular pulse in hertz is approximately the reciprocal of the
pulse duration 1/sRect.PulseWidth.

Pulses of Rectangular Waveform
This example shows how to create rectangular pulse waveform signals having different
durations. The example plots two pulses of each waveform.
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Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Create a rectangular pulse with a duration of 100 μs and a PRF of 1 kHz. Set the number
of pulses in the output equal to two.

waveform = phased.RectangularWaveform('PulseWidth',100e-6,...
    'PRF',1e3,'OutputFormat','Pulses','NumPulses',2);

Make a copy of your rectangular pulse and change the pulse width in your original
waveform to 10 μs.

waveform2 = clone(waveform);
waveform.PulseWidth = 10e-6;

sRect and sRect1 now specify different rectangular pulses because you changed the
pulse width of waveform.

Execute the System objects to return two pulses of your rectangular pulse waveforms.

y = waveform();
y2 = waveform2();

Plot the real part of the waveforms.

totaldur = 2*1/waveform.PRF;
totnumsamp = totaldur*waveform.SampleRate;
t = unigrid(0,1/waveform.SampleRate,totaldur,'[)');
subplot(2,1,1)
plot(t.*1000,real(y))
axis([0 totaldur*1e3 0 1.5])
title('Two 10-\musec duration pulses (PRF = 1 kHz)')
set(gca,'XTick',0:0.2:totaldur*1e3)
subplot(2,1,2)
plot(t.*1000,real(y2))
axis([0 totaldur*1e3 0 1.5])
xlabel('Milliseconds')
title('Two 100-\musec duration pulses (PRF = 1 kHz)')
set(gca,'XTick',0:0.2:totaldur*1e3)
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Linear Frequency Modulated Pulse Waveforms
In this section...
“Benefits of Using Linear FM Pulse Waveform” on page 4-7
“Definition of Linear FM Pulse Waveform” on page 4-7
“How to Create Linear FM Pulse Waveforms” on page 4-8
“Create Linear FM Pulse Waveform” on page 4-9
“Linear FM Pulse Waveform Plot” on page 4-9
“Ambiguity Function of Linear FM Waveform” on page 4-11
“Compare Autocorrelation for Rectangular and Linear FM Waveforms” on page 4-13

Benefits of Using Linear FM Pulse Waveform
Increasing the duration of a transmitted pulse increases its energy and improves target
detection capability. Conversely, reducing the duration of a pulse improves the range
resolution of the radar.

For a rectangular pulse, the duration of the transmitted pulse and the processed echo are
effectively the same. Therefore, the range resolution of the radar and the target detection
capability are coupled in an inverse relationship.

Pulse compression techniques enable you to decouple the duration of the pulse from its
energy by effectively creating different durations for the transmitted pulse and processed
echo. Using a linear frequency modulated pulse waveform is a popular choice for pulse
compression.

Definition of Linear FM Pulse Waveform
The complex envelope of a linear FM pulse waveform with increasing instantaneous
frequency is:

x(t) = a(t)e jπ(β/τ)t2

where β is the bandwidth and τ is the pulse duration.

If you denote the phase by Θ(t), the instantaneous frequency is:
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1
2π

dΘ(t)
dt = β

τ t

which is a linear function of t with slope equal to β/τ.

The complex envelope of a linear FM pulse waveform with decreasing instantaneous
frequency is:

x(t) = a(t)e− jπβ/τ (t2− 2τt)

Pulse compression waveforms have a time-bandwidth product, βτ, greater than 1.

How to Create Linear FM Pulse Waveforms
To create a linear FM pulse waveform, use phased.LinearFMWaveform. You can
customize certain characteristics of the waveform, including:

• Sample rate
• Duration of a single pulse
• Pulse repetition frequency
• Sweep bandwidth
• Sweep direction (up or down), corresponding to increasing and decreasing

instantaneous frequency
• Envelope, which describes the amplitude modulation of the pulse waveform. The

envelope can be rectangular or Gaussian.

• The rectangular envelope is as follows, where τ is the pulse duration.

a(t) =
1 0 ≤ t ≤ τ
0 otherwise

• The Gaussian envelope is:

a(t) = e−t2/τ2 t ≥ 0
• Number of samples or pulses in each vector that represents the waveform
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Create Linear FM Pulse Waveform
This example shows how to create a linear FM pulse waveform using
phased.LinearFMWaveform. The example illustrates how to specify property settings.

Create a linear FM pulse with a sample rate of 1 MHz, a pulse duration of 50 μs with an
increasing instantaneous frequency, and a sweep bandwidth of 100 kHz. The pulse
repetition frequency is 10 kHz and the amplitude modulation is rectangular.

waveform = phased.LinearFMWaveform('SampleRate',1e6,...
    'PulseWidth',50e-6,'PRF',10e3,...
    'SweepBandwidth',100e3,'SweepDirection','Up',...
    'Envelope','Rectangular',...
    'OutputFormat','Pulses','NumPulses',1);

Linear FM Pulse Waveform Plot
This example shows how to plot a linear FM (LFM) pulse waveform. The LFM waveform
has a duration of 100 microseconds, a bandwidth of 200 kHz, and a PRF of 4 kHz. Use the
default values for the other properties. Compute the time-bandwidth product. Plot the
real part of the waveform and plot one full pulse repetition interval.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

waveform = phased.LinearFMWaveform('PulseWidth',100e-6,...
    'SweepBandwidth',200e3,'PRF',4e3);

Display the time-bandwidth product of the FM sweep.

disp(waveform.PulseWidth*waveform.SweepBandwidth)

    20

Plot the real part of the waveform.

plot(waveform)
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Use the step method to obtain one full repetition interval of the signal. Plot the real and
imaginary parts.

y = waveform();
t = unigrid(0,1/waveform.SampleRate,1/waveform.PRF,'[)');
figure
subplot(2,1,1)
plot(t,real(y))
axis tight
title('Real Part')
subplot(2,1,2)
plot(t,imag(y))
xlabel('Time (s)')
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title('Imaginary Part')
axis tight

Ambiguity Function of Linear FM Waveform
This example shows how to plot the ambiguity function of a linear FM pulse waveform.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Define and set up the linear FM waveform.
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waveform = phased.LinearFMWaveform('PulseWidth',100e-6,...
    'SweepBandwidth',2e5,'PRF',1e3);

Generate samples of the waveform.

wav = waveform();

Create a 3-D surface plot of the ambiguity function for the waveform.

[afmag_lfm,delay_lfm,doppler_lfm] = ambgfun(wav,...
    waveform.SampleRate,waveform.PRF);
surf(delay_lfm*1e6,doppler_lfm/1e3,afmag_lfm,...
    'LineStyle','none')
axis tight
grid on
view([140,35])
colorbar
xlabel('Delay \tau (\mus)')
ylabel('Doppler f_d (kHz)')
title('Linear FM Pulse Waveform Ambiguity Function')
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The surface has a narrow ridge that is slightly tilted. The tilt indicates better resolution in
the zero delay cut.

Compare Autocorrelation for Rectangular and Linear FM
Waveforms
This example shows how to compute and plot the ambiguity function magnitudes for a
rectangular and linear FM pulse waveform. The zero Doppler cut (magnitudes of the
autocorrelation sequences) illustrates pulse compression in the linear FM pulse
waveform.
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Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Create a rectangular waveform and a linear FM pulse waveform having the same duration
and PRF. Generate samples of each waveform.

rectwaveform = phased.RectangularWaveform('PRF',20e3);
lfmwaveform = phased.LinearFMWaveform('PRF',20e3);
xrect = rectwaveform();
xlfm = lfmwaveform();

Compute the ambiguity function magnitudes for each waveform.

[ambrect,delay] = ambgfun(xrect,rectwaveform.SampleRate,rectwaveform.PRF,...
    'Cut','Doppler');
ambfm = ambgfun(xlfm,lfmwaveform.SampleRate,lfmwaveform.PRF,...
    'Cut','Doppler');

Plot the ambiguity function magnitudes.

subplot(211)
stem(delay,ambrect)
title('Autocorrelation of Rectangular Pulse')
axis([-5e-5 5e-5 0 1])
set(gca,'XTick',1e-5*(-5:5))
subplot(212)
stem(delay,ambfm)
xlabel('Delay (seconds)')
title('Autocorrelation of Linear FM Pulse')
axis([-5e-5 5e-5 0 1])
set(gca,'XTick',1e-5*(-5:5))
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See Also

Related Examples
• “Waveform Analysis Using the Ambiguity Function”
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Stepped FM Pulse Waveforms
A stepped frequency pulse waveform consists of a series of N narrowband pulses. The
frequency is increased from step to step by a fixed amount, Δf, in Hz.

Similar to linear FM pulse waveforms, stepped frequency waveforms are a popular pulse
compression technique. Using this approach enables you to increase the range resolution
of the radar without sacrificing target detection capability.

To create a stepped FM pulse waveform, use phased.SteppedFMWaveform.

The stepped frequency pulse waveform has the following modifiable properties:

• SampleRate — Sampling rate in Hz
• PulseWidth — Pulse duration in seconds
• PRF — Pulse repetition frequency in Hz
• FrequencyStep — Frequency step in Hz
• NumSteps — Number of frequency steps
• OutputFormat — Output format in pulses or samples
• NumSamples — Number of samples in the output when the OutputFormat property is

'Samples'
• NumPulses — Number of pulses in the output when the OutputFormat property is

'Pulses'

Create and Plot Stepped FM Pulse Waveform
This example shows how to create and plot a 5-step stepped FM pulse waveform using the
phased.SteppedFM System object™. Set the pulse width (duration) to 50 µs, the pulse
repetition frequency (PRF) to 10 kHz, and the frequency step size to 20 kHz. The
sampling rate is 1 MHz. By default, the OutputFormat property is set to 'Pulses' and
NumPulses is one.

waveform = phased.SteppedFMWaveform('SampleRate',1e6,...
    'PulseWidth',50e-6,'PRF',10e3,...
    'FrequencyStep',20e3,'NumSteps',5);

Use the bandwidth method to show that the bandwidth of the stepped FM pulse
waveform equals the product of the frequency step size and the number of steps.
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bandwidth(waveform)

ans =

      100000

Because the OutputFormat property is set to 'Pulses' and the NumPulses property is set
to one, executing the System object returns one pulse repetition interval (PRI). The pulse
duration within that interval is set by the PulseWidth property. The signal in the
remainder of the PRI consists of zeros.

The frequency of the initial pulse is zero Hz (DC). Each time you execute the System
object, the frequency of the narrowband pulse increments by the value of the
FrequencyStep property. If you execute the System object more times than the value of
the NumSteps property, the process repeats, starting over with the DC pulse.

Execute the System object to return successively higher frequency pulses. Plot the pulses
one by one in the same figure window. Pause the loop to visualize the increment in
frequency with each execution of the System object. Execute the System object one more
time than the number of pulses to demonstrate that the process starts over with the DC
pulse.

This figure shows the pulse plot for the last iteration of the loop.

t = unigrid(0,1/waveform.SampleRate,1/waveform.PRF,'[)');
for i = 1:waveform.NumSteps
    plot(t,real(waveform()))
    pause(0.5)
    axis tight
end
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This plot shows how the pulse returns to its DC value.

plot(t,waveform())
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FMCW Waveforms

In this section...
“Benefits of Using FMCW Waveform” on page 4-20
“How to Create FMCW Waveforms” on page 4-20
“Double Triangular Sweep” on page 4-21

Benefits of Using FMCW Waveform
Radar systems that use frequency-modulated, continuous-wave (FMCW) waveforms are
typically smaller and less expensive to manufacture than pulsed radar systems. FMCW
waveforms can estimate the target range effectively, whereas the simplest continuous-
wave waveforms cannot.

FMCW waveforms are common in automotive radar systems and ground-penetrating
radar systems.

How to Create FMCW Waveforms
To create an FMCW waveform, use phased.FMCWWaveform. You can customize certain
characteristics of the waveform, including:

• Sample rate.
• Period and bandwidth of the FM sweep. These quantities can cycle through multiple

values during your simulation.

Tip  To find targets up to a given maximum range, r, you can typically use a sweep
period of approximately 5*range2time(r) or 6*range2time(r). To achieve a
range resolution of delta_r, use a bandwidth of at least range2bw(delta_r).

• Sweep shape. This shape can be sawtooth (up or down) or triangular.

Tip For moving targets, you can use a triangular sweep to resolve ambiguity between
range and Doppler.
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phased.FMCWWaveform assumes that all frequency modulations are linear. For
triangular sweeps, the slope of the down sweep is the opposite of the slope of the up
sweep.

Double Triangular Sweep
This example shows how to sample an FMCW waveform with a double triangular sweep in
which the two sweeps have different slopes. Then, the example plots a spectrogram.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Create an FMCW waveform object for which the SweepTime and SweepBandwidth
properties are vectors of length two. For each period, the waveform alternates between
the pairs of corresponding sweep time and bandwidth values.

st = [1e-3 1.1e-3];
bw = [1e5 9e4];
waveform = phased.FMCWWaveform('SweepTime',st,...
    'SweepBandwidth',bw,'SweepDirection','Triangle',...
    'SweepInterval','Symmetric','SampleRate',2e5,...
    'NumSweeps',4);

Compute samples from four sweeps (two periods). In a triangular sweep, each period
consists of an up sweep and down sweep.

x = waveform();

Plot the spectrogram.

[S,F,T] = spectrogram(x,32,16,32,waveform.SampleRate);
image(T,fftshift(F),fftshift(mag2db(abs(S))))
xlabel('Time (sec)')
ylabel('Frequency (Hz)')
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Phase-Coded Waveforms
In this section...
“When to Use Phase-Coded Waveforms” on page 4-23
“How to Create Phase-Coded Waveforms” on page 4-23

When to Use Phase-Coded Waveforms
Situations in which you might use a phase-coded waveform instead of another type of
waveform include:

• When a rectangular pulse cannot provide both of these characteristics:

• Short enough pulse for good range resolution
• Enough energy in the signal to detect the reflected echo at the receiver

• When two or more radar systems are close to each other and you want to reduce
interference among them.

• When digital processing suggests using a waveform with a discrete set of phases. For
example, a Barker-coded waveform is a bi-phase waveform.

Conversely, you might use another waveform instead of a phase-coded waveform in the
following situations:

• When you need to detect or track high-speed targets

Phase-coded waveforms tend to perform poorly when signals have Doppler shifts.
• When the hardware requirements for phase-coded waveforms are prohibitively

expensive

How to Create Phase-Coded Waveforms
To create a phase-coded waveform, use phased.PhaseCodedWaveform. You can
customize certain characteristics of the waveform, including:

• Type of phase code
• Number of chips
• Chip width
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• Sample rate
• Pulse repetition frequency (PRF)
• Sequence index (Zadoff-Chu code only)

After you create a phased.PhaseCodedWaveform object, you can plot the waveform
using the plot method of this class. You can also generate samples of the waveform using
the step method.

For a full list of properties and methods, see the phased.PhaseCodedWaveform
reference page.
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Basic Radar Using Phase-Coded Waveform
Instead of the rectangular waveform used in the “End-to-End Radar System” example,
you can use a phase-coded waveform instead of a rectangular waveform. To do so, replace
the phased.RectangularWaveform System object™ with
phased.PhaseCodedWaveform .

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

waveform = phased.PhaseCodedWaveform('Code','Frank','NumChips',4,...
    'ChipWidth',1e-6,'PRF',5e3,'OutputFormat','Pulses',...
    'NumPulses',1);

Then, redefine the pulse width, tau , using the properties of the new waveform.

tau = waveform.ChipWidth*waveform.NumChips;

The remainder of the code is almost identical to the code in the original examples and is
presented here without comments. For a detailed explanation of how the code works, see
the original “End-to-End Radar System” example.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[1e9 10e9]);
target = phased.RadarTarget('Model','Nonfluctuating',...
    'MeanRCS',0.5,'PropagationSpeed',physconst('LightSpeed'),...
    'OperatingFrequency',4e9);
transmitterplatform = phased.Platform('InitialPosition',[0;0;0],...
    'Velocity',[0;0;0]);
targetplatform = phased.Platform('InitialPosition',[7000; 5000; 0],...
    'Velocity',[-15;-10;0]);
[tgtrng,tgtang] = rangeangle(targetplatform.InitialPosition,...
    transmitterplatform.InitialPosition);

Pd = 0.9;
Pfa = 1e-6;
numpulses = 10;
SNR = albersheim(Pd,Pfa,10);
maxrange = 1.5e4;
lambda = physconst('LightSpeed')/4e9;
Pt = radareqpow(lambda,maxrange,SNR,tau,'RCS',0.5,'Gain',20);
transmitter = phased.Transmitter('PeakPower',50e3,'Gain',20,...
    'LossFactor',0,'InUseOutputPort',true,...
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    'CoherentOnTransmit',true);
radiator = phased.Radiator('Sensor',antenna,...
    'PropagationSpeed',physconst('LightSpeed'),...
    'OperatingFrequency',4e9);
collector = phased.Collector('Sensor',antenna,...
    'PropagationSpeed',physconst('LightSpeed'),...
    'Wavefront','Plane','OperatingFrequency',4e9);
receiver = phased.ReceiverPreamp('Gain',20,'NoiseFigure',2,...
    'ReferenceTemperature',290,'SampleRate',1e6,...
    'EnableInputPort',true,'SeedSource','Property','Seed',1e3);
channel = phased.FreeSpace(...
    'PropagationSpeed',physconst('LightSpeed'),...
    'OperatingFrequency',4e9,'TwoWayPropagation',false,...
    'SampleRate',1e6);

T = 1/waveform.PRF;
txpos = transmitterplatform.InitialPosition;

rxsig = zeros(waveform.SampleRate*T,numpulses);
for n = 1:numpulses
    [tgtpos,tgtvel] = targetplatform(T);
    [tgtrng,tgtang] = rangeangle(tgtpos,txpos);
    sig = waveform();
    [sig,txstatus] = transmitter(sig);
    sig = radiator(sig,tgtang);
    sig = channel(sig,txpos,tgtpos,[0;0;0],tgtvel);
    sig = target(sig);
    sig = channel(sig,tgtpos,txpos,tgtvel,[0;0;0]);
    sig = collector(sig,tgtang);
    rxsig(:,n) = receiver(sig,~txstatus);
end
rxsig = pulsint(rxsig,'noncoherent');
t = unigrid(0,1/receiver.SampleRate,T,'[)');
rangegates = (physconst('LightSpeed')*t)/2;
plot(rangegates,rxsig)
hold on
xlabel('Meters'); ylabel('Power')
ylim = get(gca,'YLim');
plot([tgtrng,tgtrng],[0 ylim(2)],'r')
hold off
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Waveforms with Staggered PRFs
In this section...
“When to Use Staggered PRFs” on page 4-28
“Linear FM Waveform with Staggered PRF” on page 4-28

When to Use Staggered PRFs
Using a nonconstant PRF has important applications in radar. This approach is called PRF
or PRI staggering.

Uses of staggered PRFs include

• Removal of Doppler ambiguities, or blind speeds, where Doppler frequencies that are
multiples of the PRF are aliased to zero

• Mitigation of the effects of jamming

To implement a staggered PRF, configure your waveform object using a vector instead of
a scalar for the PRF property value.

Linear FM Waveform with Staggered PRF
This example shows how to model a linear FM pulse waveform with two PRFs of 1 and 2
kHz. Set the sweep bandwidth to 200 kHz and the duration of 100 μs. The sample rate is
1 MHz. Output 5 pulses.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

prfs = [1e3 2e3];
waveform = phased.LinearFMWaveform('PRF',prfs,'SweepBandwidth',200e3,...
    'PulseWidth',100e-6,'NumPulses',5);
sig = waveform();
T = length(sig)*(1/waveform.SampleRate);
t = unigrid(0,1/waveform.SampleRate,T,'[)');
plot(t.*1000,real(sig))
set(gca,'xtick',[0 1 1.5 2.5 3]);
xlabel('millisec')
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Plot Spectrogram Using Radar Waveform Analyzer App
The radarWaveformAnalyzer is a Matlab™ App that lets you explore important
properties of a signal such as its waveform, spectrum, and ambiguity function.

Open radarWaveformAnalyzer App

When you type radarWaveformAnalyzer from the command line or select the app from
the App Toolstrip, an interactive window opens. The default window shows a rectangular
waveform and its spectrum. You can then select various options to analyze different
waveforms.

radarWaveformAnalyzer
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Show the spectrogram of baseband FMCW signal

As an example, use the app to show the spectrogram of a continuous FMCW waveform.

1 Set the Waveform to FMCW
2 Set the Sweep Interval to Symmetric
3 Set the Number of Sweeps to 4
4 In the Analysis tab, select Spectrogram

Then, you will see a plot of the spectrogram of the signal similar to this.
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Transmitter
In this section...
“Transmitter Object” on page 4-33
“Phase Noise” on page 4-36

Transmitter Object
The phased.Transmitter object lets you model key components of the radar equation
including the peak transmit power, the transmit gain, and a system loss factor. You can
use phased.Transmitter together with radareqpow, radareqrng, and radareqsnr,
to relate the received echo power to your transmitter specifications.

While the preceding functionality is important in applications dependent on amplitude
such as signal detectability, Doppler processing depends on the phase of the complex
envelope. In order to accurately estimate the radial velocity of moving targets, it is
important that the radar operates in either a fully coherent or pseudo-coherent mode. In
the fully coherent, or coherent on transmit, mode, the phase of the transmitted pulses is
constant. Constant phase provides you with a reference to detect Doppler shifts.

A transmitter that applies a random phase to each pulse creates phase noise that can
obscure Doppler shifts. If the components of the radar do not enable you to maintain
constant phase, you can create a pseudo-coherent, or coherent on receive radar by
keeping a record of the random phase errors introduced by the transmitter. The receiver
can correct for these errors by modulation of the complex envelope. The
phased.Transmitter object enables you to model both coherent on transmit and
coherent on receive behavior.

The transmitter object has the following modifiable properties:

• PeakPower — Peak transmit power in watts
• Gain — Transmit gain in decibels
• LossFactor — Loss factor in decibels
• InUseOutputPort — Track transmitter's status. Setting this property to true

outputs a vector of 1s and 0s indicating when transmitter is on and off. In a monostatic
radar, the transmitter and receiver cannot operate simultaneously.

• CoherentOnTransmit — Preserve coherence among transmitter pulses. Setting this
property to true (the default) models the operation of a fully coherent transmitter
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where the pulse-to-pulse phase is constant. Setting this property to false introduces
random phase noise from pulse to pulse and models the operation of a non-coherent
transmitter.

• PhaseNoiseOutputPort — Output the random pulse phases introduced by non-
coherent operation of the transmitter. This property only applies if the
CoherentOnTransmit property is false. By keeping a record of the random pulse
phases, you can create a pseudo-coherent, or coherent on receive radar.

Transmit Linear FM Pulse

Amplify and transmit a linear FM pulse.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Construct a transmitter with a peak transmit power of 1000 watts, a transmit gain of 20
decibels (dB), and a loss factor of 0 dB. Set the InUseOutPutPort property to true to
record the transmitter status. Pulse waveform values are scaled based on the peak
transmit power and the ratio of the transmitter gain to loss factor.

transmitter = phased.Transmitter('PeakPower',1e3,'Gain',20,...
   'LossFactor',0,'InUseOutputPort',true)

transmitter = 
  phased.Transmitter with properties:

             PeakPower: 1000
                  Gain: 20
            LossFactor: 0
       InUseOutputPort: true
    CoherentOnTransmit: true

The waveform scaling factor is sqrt(PeakPower*db2pow(Gain - LossFactor))

Construct a linear FM pulse waveform for transmission. Use a 100 μsec linear FM pulse
having a bandwidth of 200 kHz. Use the default sweep direction and sample rate. Set the
pulse repetition frequency (PRF) to 2 kHz. Obtain one pulse by setting the NumPulses
property of the phased.LinearFMWaveform object to unity.

waveform = phased.LinearFMWaveform('PulseWidth',100e-6,'PRF',2e3,...
   'SweepBandwidth',200e3,'OutputFormat','Pulses','NumPulses',1);
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Generate the pulse by executing the phased.LinearFMWaveform waveform System
object™. Then, transmit the pulse by executing the phased.Transmitter System
object.

wf = waveform();
[txoutput,txstatus] = transmitter(wf);
t = unigrid(0,1/waveform.SampleRate,1/waveform.PRF,'[)');
subplot(211)
plot(t,real(txoutput))
axis tight
grid on
ylabel('Amplitude')
title('Transmitter Output (real part) - One PRI')
subplot(212)
plot(t,txstatus)
axis([0 t(end) 0 1.5])
xlabel('Seconds')
grid on
ylabel('Off-On Status')
set(gca,'ytick',[0 1])
title('Transmitter Status')
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Phase Noise
To model a coherent on receive radar, you can set the CoherentOnTransmit property to
false and the PhaseNoiseOutputPort property to true. You can output the random
phase added to each sample when you execute the System object.

Transmit Rectangular Pulse With Phase Noise

This example illustrates adding phase noise to a rectangular pulse waveform having five
pulses. A random phase is added to each sample of the waveform. Compute the phase of
the output waveform and compare the phase to the phase noise returned when executing
the System object™.
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Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

For convenience, set the gain of the transmitter to 0 dB, the peak power to 1 W, and seed
the random number generator to ensure reproducible results.

waveform = phased.RectangularWaveform('NumPulses',5);
transmitter = phased.Transmitter('CoherentOnTransmit',false,...
   'PhaseNoiseOutputPort',true,'Gain',0,'PeakPower',1,...
   'SeedSource','Property','Seed',1000);
wf = waveform();
[txtoutput,phnoise] = transmitter(wf);
phdeg = rad2deg(phnoise);
phdeg(phdeg>180)= phdeg(phdeg>180) - 360;
plot(wf)
title('Input Waveform')
axis([0 length(wf) 0 1.5])
ylabel('Amplitude')
grid on
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subplot(2,1,1)
plot(rad2deg(atan2(imag(txtoutput),real(txtoutput))))
title('Phase of the Output')
ylabel('Degrees')
axis([0 length(wf) -180 180])
grid on
subplot(2,1,2)
plot(phdeg)
title('Phase Noise'); ylabel('Degrees')
axis([0 length(wf) -180 180])
grid on

4 Waveforms, Transmitter, and Receiver

4-38



The first figure shows the waveform. The phase of each pulse at the input to the
transmitter is zero. In the second figure, the top plot shows the phase of the transmitter
output waveform. The bottom plot shows the phase added to each sample. Focus on the
first 100 samples. The pulse waveform is equal to 1 for samples 1-50 and 0 for samples
51-100. The added random phase is a constant -124.7° for samples 1-100, but this affects
the output only when the pulse waveform is nonzero. In the output waveform, you see
that the output waveform has a phase of -124.7° for samples 1-50 and 0 for samples
51-100. Examining the transmitter output and phase noise for samples where the input
waveform is nonzero, you can see that the phase output the System object and the phase
of the transmitter output agree.
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Receiver Preamp
In this section...
“Operation of Receiver Preamp” on page 4-40
“Configuring Receiver Preamp” on page 4-40
“Model Receiver Effects on Sinusoidal Input” on page 4-42

Operation of Receiver Preamp
The phased.ReceiverPreamp object lets you model the effects of gain and component-
based noise on the signal-to-noise ratio (SNR) of received signals.
phased.ReceiverPreamp operates on baseband signals. The object is not intended to
model system effects at RF or intermediate frequency (IF) stages.

Configuring Receiver Preamp
The phased.ReceiverPreamp object has the following modifiable properties:

• EnableInputPort — A logical property that enables you to specify when the receiver
is on or off. Input the actual status of the receiver as a vector to step. This property is
useful when modeling a monostatic radar system. In a monostatic radar, it is important
to ensure the transmitter and receiver are not operating simultaneously. See
phased.Transmitter and “Transmitter” on page 4-33.

• Gain — Gain in dB (GdB)
• LossFactor — Loss factor in dB (LdB)
• NoiseMethod — Specify noise input as noise power or noise temperature
• NoiseFigure — Receiver noise figure in dB (FdB)
• ReferenceTemperature — Receiver reference temperature in kelvin (T)
• SampleRate — Sample rate (fs)
• NoisePower — Noise power specified in Watts (σ2)
• NoiseComplexity — Specify noise as real-valued or complex-valued
• EnableInputPort — Add input to specify when the receiver is active
• PhaseNoiseInputPort — Add input to specify phase noise for coherent on receive

receiver
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• SeedSource — Lets you specify random number generator seed
• Seed — Random number generator seed

The output signal, y[n], of the phased.ReceiverPreamp System object equals the input
signal scaled by the ratio of receiver amplitude gain to amplitude loss plus additive noise

y[n] = G
L x[n] + σ

2w[n]

where x[n] is the complex-valued input signal and w[n] is unit-variance noise complex-
valued noise.

When the input signal is real-valued, the output signal, y[n], equals the real-valued input
signal scaled by the ratio of receiver amplitude gain to amplitude loss plus real-valued
additive noise

y[n] = G
L x[n] + σw[n]

.

The amplitude gain, G, and loss, L, can be express in terms of the input dB parameters by

G = 10GdB/20

L = 10LdB/20

.

respectively.

The additive noise for the receiver is modeled as a zero-mean complex white Gaussian
noise vector with variance, σ2, equal to the noise power. The real and imaginary parts of
the noise vector each have variance equal to 1/2 the noise power.

You can set the noise power directly by choosing the NoiseMethod property to be
'Noise power' and then setting the NoisePower property to a real positive number.
Alternatively, you can set the noise power using the system temperature by choosing the
NoiseMethod property to be 'Noise temperature'. Then

σ2 = kBBTF
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where kB is Boltzmann’s constant, B is the noise bandwidth which is equal to the sample
rate, fs, T is the system temperature, and F is the noise figure in power units.

The noise figure, F, is a dimensionless quantity that indicates how much a receiver
deviates from an ideal receiver in terms of internal noise. An ideal receiver produces
thermal noise power defined by noise bandwidth and temperature. In terms of power
units, the noise figure F = 10FdB/10. A noise figure of 0 dB indicates that the noise power of
a receiver equals the noise power of an ideal receiver. Because an actual receiver cannot
exhibit a noise power value less than an ideal receiver, the noise figure is always greater
than or equal to one. In decibels, the noise figure must be greater than or equal to zero.

To model the effect of the receiver preamp on the signal, phased.ReceiverPreamp
computes the effective system noise temperature by taking the product of the reference
temperature, T, and the noise figure F in power units. See systemp for details.

Model Receiver Effects on Sinusoidal Input
Specify a phased.ReceiverPreamp System object™ with a gain of 20 dB, a noise figure
of 5 dB, and a reference temperature of 290 degrees kelvin.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

receiver = phased.ReceiverPreamp('Gain',20,...
    'NoiseFigure',5,'ReferenceTemperature',290,...
    'SampleRate',1e6,'SeedSource','Property','Seed',1e3);

Assume a 100-Hz sine wave input with an amplitude of 1 microvolt. Because the Phased
Array System Toolbox assumes that all modeling is done at baseband, use a complex
exponential as the input when executing the System object.

t = unigrid(0,0.001,0.1,'[)');
x = 1e-6*exp(1i*2*pi*100*t).';
y = receiver(x);

The output of the phased.ReceiverPreamp.step method is complex-valued as
expected.

Now show how the same output can be produced from the multiplicative amplitude gain
and additive noise. First assume that the noise bandwidth equals the sample rate of the
receiver preamp (1 MHz). Then, the noise power is equal to:

4 Waveforms, Transmitter, and Receiver

4-42



NoiseBandwidth = receiver.SampleRate;
noisepow = physconst('Boltzmann')*...
    systemp(receiver.NoiseFigure,receiver.ReferenceTemperature)*NoiseBandwidth;

The noise power is the variance of the additive white noise. To determine the correct
amplitude scaling of the input signal, note that the gain is 20 dB. Because the loss factor
in this case is 0 dB, the scaling factor for the input signal is found by solving the following
equation for the multiplicative gain G from the gain in dB, GdB:

G = 10(GdB/20)

G = 10^(receiver.Gain/20)

G = 10

The gain is 10. By scaling the input signal by a factor of ten and adding complex white
Gaussian noise with the appropriate variance, you produce an output equivalent to the
preceding call to phased.ReceiverPreamp.step (use the same seed for the random
number generation).

rng(1e3);
y1 = G*x + sqrt(noisepow/2)*(randn(size(x))+1j*randn(size(x)));

Compare a few values of y to y1.

disp(y1(1:10) - y(1:10))

     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
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Model Coherent-on-Receive Behavior
When modeling a coherent-on-receive monostatic radar, use the EnableInputPort and
PhaseNoiseInputPort properties. In a monostatic radar, the transmitter and receiver
cannot operate simultaneously. Therefore, it is important to keep track of when the
transmitter is active so that you can disable the receiver at those times. By setting the
EnableInputPort to true, you can input a record of when the transmitter is active as
an argument when executing the phased.ReceiverPreamp System object.

In a coherent-on-receive radar, the receiver corrects for the phase noise introduced at the
transmitter by using the record of those phase errors. By setting the
PhaseNoiseInputPort property to true, you can input a record of the transmitter
phase errors as an argument when executing the phased.ReceiverPreamp System
object.

Coherent-on-Receive for Rectangular Pulse
To illustrate coherent-on-receive, construct a rectangular pulse waveform with five
pulses. The waveform pulse repetition frequency (PRF) is 10 kHz and the pulse width is
50 μs. The pulse repetition interval (PRI) is exactly two times the pulse width so the
transmitter alternates between active and inactive time intervals of the same duration.
For convenience, set the gains on both the transmitter and receiver to 0 dB and the peak
power on the transmitter to 1 W.

Use the PhaseNoiseOutputPort and InUseOutputPort properties of the transmitter
to record the phase noise and the status of the transmitter.

Enable the EnableInputPort and PhaseNoiseInputPort properties of the receiver
preamp to determine when the receiver is active and to correct for the phase noise
introduced at the transmitter.

Delay the output of the transmitter using the delayseq function to simulate the
waveform arriving at the receiver preamp when the transmitter is inactive and the
receiver is active.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

waveform = phased.RectangularWaveform('NumPulses',5);
transmitter = phased.Transmitter('CoherentOnTransmit',false,...
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    'PhaseNoiseOutputPort',true,'Gain',0,'PeakPower',1,...
    'SeedSource','Property','Seed',1000,'InUseOutputPort',true);
wf = waveform();
[troutput,trstatus,phasenoise] = transmitter(wf);
troutput = delayseq(troutput,waveform.PulseWidth,...
    waveform.SampleRate);
receiver = phased.ReceiverPreamp('Gain',0,...
    'PhaseNoiseInputPort',true,'EnableInputPort',true);
y = receiver(troutput,~trstatus,phasenoise);
subplot(2,1,1)
plot(real(troutput))
title('Delayed Transmitter Output with Phase Noise')
ylabel('Amplitude')
subplot(2,1,2)
plot(real(y))
xlabel('Samples')
ylabel('Amplitude')
title('Received Signal with Phase Correction')
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Radar Equation
In this section...
“Radar Equation Theory” on page 4-47
“Link Budget Calculation Using the Radar Equation” on page 4-48
“Maximum Detectable Range for a Monostatic Radar” on page 4-49
“Output SNR at Receiver in Bistatic Radar” on page 4-50

Radar Equation Theory
The point target radar range equation estimates the power at the input to the receiver for
a target of a given radar cross section at a specified range. In this equation, the signal
model is assumed to be deterministic. The equation for the power at the input to the
receiver is:

P
P G G

R R L
r

t t r

t r

=
l s

p

2

3 2 2
4( )

where the terms in the equation are:

• Pr — Received power in watts.
• Pt — Peak transmit power in watts.
• Gt — Transmitter gain.
• Gr — Receiver gain.
• λ — Radar operating frequency wavelength in meters.
• σ — Target's nonfluctuating radar cross section in square meters.
• L — General loss factor to account for both system and propagation loss.
• Rt — Range from the transmitter to the target.
• Rr — Range from the receiver to the target. If the radar is monostatic, the transmitter

and receiver ranges are identical.

The equation for the power at the input to the receiver represents the signal term in the
signal-to-noise (SNR) ratio. To model the noise term, assume the thermal noise in the
receiver has a white noise power spectral density (PSD) given by:
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P f kT( ) =

where k is the Boltzmann constant and T is the effective noise temperature. The receiver
acts as a filter to shape the white noise PSD. Assume that the magnitude squared receiver
frequency response approximates a rectangular filter with bandwidth equal to the
reciprocal of the pulse duration, 1/τ. The total noise power at the output of the receiver is:

N
kTFn

=

t

where Fn is the receiver noise figure.

The product of the effective noise temperature and the receiver noise factor is referred to
as the system temperature and is denoted by Ts, so that Ts = TFn .

Using the equation for the received signal power and the output noise power, the receiver
output SNR is:

P
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Solving for the required peak transmit power:

P
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p

t l s

The preceding equations are implemented in the Phased Array System Toolbox by the
functions: radareqpow, radareqrng, and radareqsnr. These functions and the
equations on which they are based are valuable tools in radar system design and analysis.

Link Budget Calculation Using the Radar Equation
This example shows how to compute the required peak transmit power using the radar
equation. You implement a noncoherent detector with a monostatic radar operating at 5
GHz. Based on the noncoherent integration of 10 1μs pulses, you want to achieve a
detection probability of 0.9 with a maximum false-alarm probability of 10−6 for a target
with a nonfluctuating radar cross section (RCS) of 1m2 at 30 km. The transmitter gain is
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30 dB. Determine the required SNR at the receiver and use the radar equation to
calculate the required peak transmit power.

Use Albersheim's equation to determine the required SNR for the specified detection and
false-alarm probabilities

Pd = 0.9;
Pfa = 1e-6;
NumPulses = 10;
SNR = albersheim(Pd,Pfa,10)

SNR = 4.9904

The required SNR is approximately 5 dB. Use the function radareqpow to determine the
required peak transmit power in watts.

tgtrng = 30e3;
fc = 5e9;
c = physconst('Lightspeed');
lambda = c/fc;
RCS = 1;
pulsedur = 1e-6;
G = 30;
Pt = radareqpow(lambda,tgtrng,SNR,pulsedur,'rcs',RCS,'gain',G)

Pt = 5.6485e+03

The required peak power is approximately 5.6 kW.

Maximum Detectable Range for a Monostatic Radar
Assume that the minimum detectable SNR at the receiver of a monostatic radar operating
at 1 GHz is 13 dB. Use the radar equation to determine the maximum detectable range
for a target with a nonfluctuating RCS of 0 . 5m2 if the radar has a peak transmit power of
1 MW. Assume the transmitter gain is 40 dB and the radar transmits a pulse that is 0.5μs
in duration.

tau = 0.5e-6;
G = 40;
RCS = 0.5;
Pt = 1e6;
lambda = 3e8/1e9;
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SNR = 13;
maxrng = radareqrng(lambda,SNR,Pt,tau,'rcs',RCS,'gain',G)

maxrng = 3.4516e+05

The maximum detectable range is approximately 345 km.

Output SNR at Receiver in Bistatic Radar
Estimate the output SNR for a target with an RCS of 1m2. The radar is bistatic. The target
is located 50 km from the transmitter and 75 km from the receiver. The radar operating
frequency is 10 GHz. The transmitter has a peak transmit power of 1 MW with a gain of
40 dB. The pulse width is 1 μs. The receiver gain is 20 dB.

fc = 10e9;
lambda = physconst('LightSpeed')/10e9;
tau = 1e-6;
Pt = 1e6;
TxRvRng =[50e3 75e3];
Gain = [40 20];
snr = radareqsnr(lambda,TxRvRng,Pt,tau,'Gain',Gain)

snr = 9.0547

The estimated SNR is approximately 9 dB.
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Display Vertical Coverage Diagram
Display the vertical coverage diagram of an antenna transmitting at 100 MHz and placed
20 meters above the ground. Set the free-space range to 100 km. Use default plotting
parameters.

freq = 100e6;
ant_height = 20;
rng_fs = 100;
[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height);
blakechart(vcp, vcpangles);
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Compute Peak Power Using Radar Equation Calculator
App

The radarEquationCalculator App lets you determine key radar characteristics such
as detection range, required peak transmit power, and SNR. The App works for
monostatic and bistatic radars.

Open radarEquationCalculator App

When you type radarEquationCalculator from the command line or select the app
from the App Toolstrip, an interactive window opens. The default window shows a
calculation of target range from SNR, power, and other parameters. You can then select
various options to compute different radar parameters.

radarEquationCalculator
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Compute Required Peak Transmit Power of Monostatic Radar

As an example, use the app to compute the required peak transmit power for a monostatic
radar to detect a large target at 100 km. The radar operates at 10 GHz with a 40 dB

 Compute Peak Power Using Radar Equation Calculator App

4-53



antenna gain. Set the probability of detection to 0.9 and the probability of false alarm to
0.0001.

1 From the Calculation Type drop-down list, choose Peak Transmit Power
2 Set the Wavelength to 3 cm
3 Specify the Pulse Width as 2 microseconds
4 Assume total System Losses of 5 dB
5 Assuming the target is a large airplane, set Target Radar Cross Section value to

100 m2
6 Choose Configuration as Monostatic
7 Set the Gain to be 40 dB
8 Open the SNR box
9 Specify the Probability of Detections as 0.9
10 Specify the Probability of False Alarm as 0.0001

Close the App window. Normally, you close the App using the close button.

hg = findall(0,'Name','Radar Equation Calculator');
close(hg)

You can see from this previously prepared screen shot that the required peak transmit
power is .2095 W.

filenm = fullfile(matlabroot,'examples','phased','radarEquationExample_03.png');
im = imread(filenm);
figure('Position',[344 206 849 644])
image(im)
axis off
set(gca,'Position',[0.083 0.083 0.834 0.888])
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Beamforming

• “Beamforming Overview” on page 5-2
• “Conventional Beamforming” on page 5-7
• “Adaptive Beamforming” on page 5-13
• “Wideband Beamforming” on page 5-18
• “Time-Delay Beamforming of Microphone ULA Array” on page 5-26
• “Visualization of Wideband Beamformer Performance” on page 5-28
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Beamforming Overview
In this section...
“Conventional Beamforming” on page 5-3
“Optimal and Adaptive Beamforming” on page 5-4

Beamforming is the spatial equivalent of frequency filtering and can be grouped into two
classes: data independent (conventional) and data-dependent (adaptive). All beamformers
are designed to emphasize signals coming from some directions and suppress signals and
noise arriving from other directions.

Phased Array System Toolbox provides nine different beamformers. This table
summarizes the main properties of the beamformers.

Beamformer Name Conventional or
Adaptive

Bandwidth Processing Domain

phased.PhaseShif
tBeamformer

Conventional Narrowband Time domain

phased.TimeDelay
Beamformer

Conventional Wideband Time domain

phased.SubbandPh
aseShiftBeamform
er

Conventional Wideband Frequency domain

phased.LCMVBeamf
ormer

Adaptive Narrowband Frequency domain

phased.MVDRBeamf
ormer

Adaptive Narrowband Frequency domain

phased.FrostBeam
former

Adaptive Wideband Time domain

phased.GSCBeamfo
rmer

Adaptive Wideband Time domain

phased.TimeDelay
LCMVBeamformer

Adaptive Wideband Time domain

phased.SubbandMV
DRBeamformer

Adaptive Wideband Frequency domain
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Conventional Beamforming
Conventional beamforming, also called classical beamforming, is the easiest to
understand. Conventional beamforming techniques include delay-and-sum beamforming,
phase-shift beamforming, subband beamforming, and filter-and-sum beamforming. These
beamformers are similar because the weights and parameters that define the
beampattern are fixed and do not depend on the array input data. The weights are chosen
to produce a specified array response to the signals and interference in the environment.
A signal arriving at an array has different times of arrival at each sensor. For example,
plane waves arriving at a linear array have a time delay that is a linear function of
distance along the array. Delay-and-sum beamforming compensates for these delays by
applying a reverse delay to each sensor. If the time delay is accurately computed, the
signals from each sensor add constructively.

Finding the compensating delay at each sensor requires accurate knowledge of the sensor
locations and signal direction. The delay-and-sum beamformer can be implemented in the
frequency domain or in the time domain. When the signal is narrowband, time delay
becomes a phase shift in the frequency domain and is implement by multiplying each
sensor signal by a frequency-dependent compensatory phase shift. This algorithm is
implemented in the phased.PhaseShiftBeamformer. For broadband signals, there are
several approaches. One approach is to delay the signal in time by a discrete number of
samples. A problem with this method is that the degree of resolution that you can
distinguish is determined by the sampling rate of your data, because you cannot resolve
delay differences less than the sampling interval. Because this technique only works if the
sampling rate is high, you must increase the sampling frequency well beyond the Nyquist
frequency so that the true delay is very close to a sample time. A second method
interpolates the signal between samples. Time delay beamforming is implemented in
phased.TimeDelayBeamformer. A third method Fourier transforms the signals to the
frequency domain, applies a linear phase shift, and converts the signal back into the time
domain. Phase-shift beamforming is performed at each frequency band (see
phased.SubbandPhaseShiftBeamformer).

Beamforming is not limited to plane waves but can be applied even when there is
wavefront curvature. In this case, the source lies in the near field. Perhaps the term
beamforming is no longer appropriate. You can use the source-array geometry to compute
the phase shift for each point in space and then apply this phase shift at each sensor
element.

The advantage of a conventional beamformer is simplicity and ease of implementation.
Another advantage is its robustness against pointing errors and signal direction errors. A
disadvantage is its broad main lobe which decreases resolution of closely spaced sources
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or targets. A second disadvantage is that it has large sidelobes that allow interference
sources to leak into the main beam.

Optimal and Adaptive Beamforming
The second class of beamformers consists of the data-dependent beamformers. The terms
optimal or adaptive beamformers are sometimes used for this class interchangeably but
they are not quite the same. Optimal beamformers apply weights that are determined by
optimizing some quantity. The MVDR beamformer determines the beamforming weights,
w, by maximizing the signal-to-noise+interference ratio of the array output

w′s 2

w′Rnw = A2 w′a 2

w′Rnw

where s represents the signal values at the sensors, a represents the source steering
vector, and A2 represents the source power at the array. Rn is the noise+interference
covariance matrix. Because the SNR is invariant under any scale factor applied to the
weights, an equivalent formulation of this criterion is to minimize the noise output w'R.nw
subject to a constraint

w′Rnw    s.t.    w′a = 1

The solution of this equation is

wopt =
Rn−1a

a′Rn−1a

and yields the minimum variance distortionless response (MVDR) beamformer. Because of
the constraint, beamformer preserves the desired signal while minimizing contributions
to the array output due to noise and interference. The MVDR beamformer is implemented
in phased.MVDRBeamformer. A broadband version is implemented in
phased.SubbandMVDRBeamformer.

There are several advantages to the MVDR beamformer.

• The beamformer incorporates the noise and interference into an optimal solution.
• The beamformer has higher spatial resolution than a conventional beamformer.
• The beamformer puts nulls in the direction of any interference sources.
• Sidelobes are smaller and smoother.
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There are two major disadvantages to the MVDR beamformer. The MVDR beamformer is
sensitive to errors in either the array parameters or arrival direction. The MVDR
beamformer is susceptible to self-nulling. In addition, trying to use MVDR as an adaptive
beamformer requires a matrix inversion every time the noise and interference statistics
change. When there are many array elements, the inversion can be computationally
expensive.

In practical applications, an accurate steering vector and an accurate covariance matrix
are not always available. Generally, all that is available is the sampled covariance matrix.
This deficiency can lead to both inadequate interference suppression and distortion of the
desired signal. In this case, the true signal direction is slightly off from the beam pointing
direction. Then the actual signal is treated as interference.

However it often turns out that the noise is not separable from the signal and it is
impossible to determine Rn. In that case, you can estimate a sample covariance matrix
from the data.

Rx = 1
K ∑k = 1

K
x(k)x′(k)

and minimizes w'Rxw instead. Minimizing this quantity leads to the minimum power
distortionless response (MPDR) beamformer. If the data vector, x, contains the signal and
the estimated data covariance matrix is perfect and the steering vector of the desired
signal is known exactly, the MPDR beamformer is equivalent to the MVDR beamformer.
However, MPDR degrades more severely when Rx is estimated from insufficient data or
the signal arrival vector is not known precisely.

Rewrite the direction constraint in the form a’w = 1 by transposing both sides. This
equivalent form suggests that it possible to include multiple constraints by using a matrix
constraint Cw = d where C is now a constraint matrix and d represents the signal gains
due to the constraints. This is the form used in the linear constraint minimum variance
(LCMV) beamformer. The LCMV beamformer is a generalization of MVDR beamforming
and is implemented in phased.LCMVBeamformer and
phased.TimeDelayLCMVBeamformer. There are several different approaches to
specifying constraints such as amplitude and derivative constraints. You can, for example,
specify weights that suppress interfering signals arriving from a particular direction while
passing signals from a different direction without distortion. The optimal LCMV weights
are determined by the equation

wopt = Rn−1C′(CRn−1C′)−1d
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The advantages and disadvantages of the MVDR beamformer also apply to the LCMV
beamformer.

While MVDR and LCMV are adaptive in principle, re-computation of the weights requires
the inversion of a potentially large covariance matrix when the array has many elements.
The Frost and generalized sidelobe cancelers are reformulations of LCMV that convert
the constrained optimization into minimizing an unconstrained form and then compute
the weights recursively. This approach removes any need to invert a covariance matrix.
See phased.FrostBeamformer and phased.GSCBeamformer.
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Conventional Beamforming
In this section...
“Uses for Beamformers” on page 5-7
“Support for Conventional Beamforming” on page 5-7
“Narrowband Phase Shift Beamformer For a ULA” on page 5-7

Uses for Beamformers
You can use a beamformer to spatially filter the arriving signals. Accentuating or
attenuating signals that arrive from specific directions helps you distinguish between
signals of interest and interfering signals from other directions.

Support for Conventional Beamforming
You can implement a narrowband phase shift beamformer using
phased.PhaseShiftBeamformer. When you use this object, you must specify these
aspects of the situation you are simulating:

• Sensor array
• Signal propagation speed
• System operating frequency
• Beamforming direction

For wideband beamformers, see “Wideband Beamforming” on page 5-18.

Narrowband Phase Shift Beamformer For a ULA
This example shows how to create and beamform a 10-element ULA. Assume the carrier
frequency is 1 GHz. Set the array element spacing to be one-half the carrier wavelength.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
array = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);
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By default, the ULA elements are isotropic antennas created by the
phased.IsotropicAntennaElement System object™. Set the frequency range of the
antenna elements so that the carrier frequency lies within the operating range.

array.Element.FrequencyRange = [8e8 1.2e9];

Simulate a test signal. For this example, use a simple rectangular pulse.

t = linspace(0,0.3,300)';
testsig = zeros(size(t));
testsig(201:205) = 1;

Assume the rectangular pulse is incident on the ULA from an angle of 30° azimuth and 0°
elevation. Use the collectPlaneWave function of the ULA System object to simulate
reception of the pulse waveform from the specified angle.

angle_of_arrival = [30;0];
x = collectPlaneWave(array,testsig,angle_of_arrival,fc);

The signal x is a matrix with ten columns. Each column represents the received signal at
one of the array elements.

Add complex-valued Gaussian noise to the signal x. Reset the default random number
stream for reproducible results. Plot the magnitudes of the received pulses at the first
four elements of the ULA.

rng default
npower = 0.5;
x = x + sqrt(npower/2)*(randn(size(x)) + 1i*randn(size(x)));
subplot(221)
plot(t,abs(x(:,1)))
title('Element 1 (magnitude)')
axis tight
ylabel('Magnitude')
subplot(222)
plot(t,abs(x(:,2)))
title('Element 2 (magnitude)')
axis tight
ylabel('Magnitude')
subplot(223)
plot(t,abs(x(:,3)))
title('Element 3 (magnitude)')
axis tight
xlabel('Seconds')
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ylabel('Magnitude')
subplot(224)
plot(t,abs(x(:,4)))
title('Element 4 (magnitude)')
axis tight
xlabel('Seconds')
ylabel('Magnitude')

Construct a phase-shift beamformer. Set the WeightsOutputPort property to true to
output the spatial filter weights that point the beamformer to the angle of arrival.

beamformer = phased.PhaseShiftBeamformer('SensorArray',array,...
    'OperatingFrequency',1e9,'Direction',angle_of_arrival,...
    'WeightsOutputPort',true);
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Execute the phase shift beamformer to compute the beamformer output and to compute
the applied weights.

[y,w] = beamformer(x);

Plot the magnitude of the output waveform along with the noise-free original waveform
for comparison.

subplot(211)
plot(t,abs(testsig))
axis tight
title('Original Signal')
ylabel('Magnitude')
subplot(212)
plot(t,abs(y))
axis tight
title('Received Signal with Beamforming')
ylabel('Magnitude')
xlabel('Seconds')
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To examine the effect of beamforming weights on the array response, plot the array
normalized power response with and without beamforming weights.

azang = -180:30:180;
subplot(211)
pattern(array,fc,[-180:180],0,'CoordinateSystem','rectangular',...
    'Type','powerdb','PropagationSpeed',physconst('LightSpeed'))
set(gca,'xtick',azang);
title('Array Response without Beamforming Weights')
subplot(212)
pattern(array,fc,[-180:180],0,'CoordinateSystem','rectangular',...
    'Type','powerdb','PropagationSpeed',physconst('LightSpeed'),...
    'Weights',w)
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set(gca,'xtick',azang);
title('Array Response with Beamforming Weights')

See Also

Related Examples
• “Conventional and Adaptive Beamformers”
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Adaptive Beamforming
In this section...
“Benefits of Adaptive Beamforming” on page 5-13
“Support for Adaptive Beamforming” on page 5-13
“Nulling with LCMV Beamformer” on page 5-13

Benefits of Adaptive Beamforming
“Narrowband Phase Shift Beamformer For a ULA” on page 5-7 uses weights chosen
independent of any data received by the array. The weights in the narrowband phase shift
beamformer steer the array response in a specified direction. However, they do not
account for any interference scenarios. As a result, these conventional beamformers are
susceptible to interference signals. Such interference signals can be a particular problem
if they occur at sidelobes of the array response.

By contrast, adaptive, or statistically optimum, beamformers can account for interference
signals. An adaptive beamformer algorithm chooses the weights based on the statistics of
the received data. For example, an adaptive beamformer can improve the SNR by using
the received data to place nulls in the array response. These nulls are placed at angles
corresponding to the interference signals.

Support for Adaptive Beamforming
Phased Array System Toolbox software provides these adaptive beamformers:

• Linearly constrained minimum variance (LCMV) beamformers
• Minimum variance distortionless response (MVDR) beamformers
• Frost beamformers

Nulling with LCMV Beamformer
This example shows how to use an LCMV beamformer to point a null of the array
response in the direction of an interfering source. The array is a 10-element uniform
linear array (ULA). By default, the ULA elements are isotropic antennas created by the
phased.IsotropicAntennaElement System object™. Set the frequency range of the
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antenna elements so that the carrier frequency lies within the operating range. The
carrier frequency is 1 GHz.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
array = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);
array.Element.FrequencyRange = [8e8 1.2e9];

Simulate a test signal using a simple rectangular pulse.

t = linspace(0,0.3,300)';
testsig = zeros(size(t));
testsig(201:205) = 1;

Assume the rectangular pulse is incident on the ULA from an angle of 30° azimuth and 0°
elevation. Use the collectPlaneWave function of the ULA System object to simulate
reception of the pulse waveform from the incident angle.

angle_of_arrival = [30;0];
x = collectPlaneWave(array,testsig,angle_of_arrival,fc);

The signal x is a matrix with ten columns. Each column represents the received signal at
one of the array elements.

Construct a conventional phase-shift beamformer. Set the WeightsOutputPort property
to true to output the spatial filter weights.

convbeamformer = phased.PhaseShiftBeamformer('SensorArray',array,...
    'OperatingFrequency',1e9,'Direction',angle_of_arrival,...
    'WeightsOutputPort',true);

Add complex-valued white Gaussian noise to the signal x. Set the default random number
stream for reproducible results.

rng default
npower = 0.5;
x = x + sqrt(npower/2)*(randn(size(x)) + 1i*randn(size(x)));

Create an interference source using the phased.BarrageJammer System object. Specify
the barrage jammer to have an effective radiated power of 10 W. The interference signal
from the barrage jammer is incident on the ULA from an angle of 120° azimuth and 0°
elevation. Use the collectPlaneWave function of the ULA System object to simulate
reception of the jammer signal.
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jammer = phased.BarrageJammer('ERP',10,'SamplesPerFrame',300);
jamsig = jammer();
jammer_angle = [120;0];
jamsig = collectPlaneWave(array,jamsig,jammer_angle,fc);

Add complex-valued white Gaussian noise to simulate noise contributions not directly
associated with the jamming signal. Again, set the default random number stream for
reproducible results. This noise power is 0 dB below the jammer power. Beamform the
signal using a conventional beamformer.

noisePwr = 1e-5;
rng(2008);
noise = sqrt(noisePwr/2)*...
    (randn(size(jamsig)) + 1j*randn(size(jamsig)));
jamsig = jamsig + noise;
rxsig = x + jamsig;
[yout,w] = convbeamformer(rxsig);

Implement the adaptive LCMV beamformer using the same ULA array. Use the target-free
data, jamsig, as training data. Output the beamformed signal and the beamformer
weights.

steeringvector = phased.SteeringVector('SensorArray',array,...
    'PropagationSpeed',physconst('LightSpeed'));
LCMVbeamformer = phased.LCMVBeamformer('DesiredResponse',1,...
    'TrainingInputPort',true,'WeightsOutputPort',true);
LCMVbeamformer.Constraint = steeringvector(fc,angle_of_arrival);
LCMVbeamformer.DesiredResponse = 1;
[yLCMV,wLCMV] = LCMVbeamformer(rxsig,jamsig);

Plot the conventional beamformer output and the adaptive beamformer output.

subplot(211)
plot(t,abs(yout))
axis tight
title('Conventional Beamformer')
ylabel('Magnitude')
subplot(212)
plot(t,abs(yLCMV))
axis tight
title('LCMV (Adaptive) Beamformer')
xlabel('Seconds')
ylabel('Magnitude')
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The adaptive beamformer significantly improves the SNR of the rectangular pulse at 0.2
s.

Using conventional and LCMV weights, plot the responses for each beamformer.

subplot(211)
pattern(array,fc,[-180:180],0,'PropagationSpeed',physconst('LightSpeed'),...
    'CoordinateSystem','rectangular','Type','powerdb','Normalize',true,...
    'Weights',w)
title('Array Response with Conventional Beamforming Weights');
subplot(212)
pattern(array,fc,[-180:180],0,'PropagationSpeed',physconst('LightSpeed'),...)
    'CoordinateSystem','rectangular','Type','powerdb','Normalize',true,...
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    'Weights',wLCMV)
title('Array Response with LCMV Beamforming Weights');

The adaptive beamform places a null at the arrival angle of the interference signal, 120°.

See Also
phased.FrostBeamformer | phased.LCMVBeamformer | phased.MVDRBeamformer

Related Examples
• “Conventional and Adaptive Beamformers”
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Wideband Beamforming

In this section...
“Support for Wideband Beamforming” on page 5-18
“Time-Delay Beamforming of Microphone ULA Array” on page 5-18
“Visualization of Wideband Beamformer Performance” on page 5-20

Support for Wideband Beamforming
Beamforming achieved by multiplying the sensor input by a complex exponential with the
appropriate phase shift only applies for narrowband signals. In the case of wideband, or
broadband, signals, the steering vector is not a function of a single frequency. Wideband
processing is commonly used in microphone and acoustic applications.

Phased Array System Toolbox software provides conventional and adaptive wideband
beamformers. They include:

• phased.FrostBeamformer
• phased.SubbandPhaseShiftBeamformer
• phased.TimeDelayBeamformer
• phased.TimeDelayLCMVBeamformer

See “Acoustic Beamforming Using a Microphone Array” for an example of using wideband
beamforming to extract speech signals in noise.

Time-Delay Beamforming of Microphone ULA Array
This example shows how to perform wideband conventional time-delay beamforming with
a microphone array of omnidirectional elements. Create an acoustic (pressure wave)
chirp signal. The chirp signal has a bandwidth of 1 kHz and propagates at a speed of 340
m/s at ground level.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

5 Beamforming

5-18



c = 340;
t = linspace(0,1,50e3)';
sig = chirp(t,0,1,1000);

Collect the acoustic chirp with a ten-element ULA. Use omnidirectional microphone
elements spaced less than one-half the wavelength at the 50 kHz sampling frequency. The
chirp is incident on the ULA with an angle of 60∘ azimuth and 0∘ elevation. Add random
noise to the signal.

microphone = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 20e3]);
array = phased.ULA('Element',microphone,'NumElements',10,...
    'ElementSpacing',0.01);
collector = phased.WidebandCollector('Sensor',array,'SampleRate',5e4,...
    'PropagationSpeed',c,'ModulatedInput',false);
sigang = [60;0];
rsig = collector(sig,sigang);
rsig = rsig + 0.1*randn(size(rsig));

Apply a wideband conventional time-delay beamformer to improve the SNR of the
received signal.

beamformer = phased.TimeDelayBeamformer('SensorArray',array,...
    'SampleRate',5e4,'PropagationSpeed',c,'Direction',sigang);
y = beamformer(rsig);

subplot(2,1,1)
plot(t(1:5000),real(rsig(1:5e3,5)))
axis([0,t(5000),-0.5,1])
title('Signal (real part) at the 5th element of the ULA')
subplot(2,1,2)
plot(t(1:5000),real(y(1:5e3)))
axis([0,t(5000),-0.5,1])
title('Signal (real part) with time-delay beamforming')
xlabel('Seconds')
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Visualization of Wideband Beamformer Performance
This example shows how to plot the response of an acoustic microphone element and an
array of microphone elements to validate the performance of a beamformer. The array
must maintain an acceptable array pattern throughout the bandwidth.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Create an 11-element uniform linear array (ULA) of microphones using cosine antenna
elements as microphones. The phased.CosineAntennaElement System object™ is
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general enough to be used as a microphone element as well because it creates or receives
a scalar field. You need to change the response frequencies to the audible range. In
addition make sure the PropagationSpeed parameter in the array pattern methods
are set to the speed of sound in air.

c = 340;
freq = [1000 2750];
fc = 2000;
numels = 11;
microphone = phased.CosineAntennaElement('FrequencyRange',freq);
array = phased.ULA('NumElements',numels,...
   'ElementSpacing',0.5*c/fc,'Element',microphone);

Plot the response pattern of the microphone element over a set of frequencies.

plotFreq = linspace(min(freq),max(freq),15);
pattern(microphone,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...
    'PlotStyle','waterfall','Type','powerdb')
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This plot shows that the element pattern is constant over the entire bandwidth.

Plot the response pattern of an 11-element array over the same set of frequencies.

pattern(array,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...
    'PlotStyle','waterfall','Type','powerdb','PropagationSpeed',c)
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This plot shows that the element pattern mainlobe decreases with frequency.

Apply a subband phase shift beamformer to the array. The direction of interest is 30°
azimuth and 0° elevation. There are 8 subbands.

direction = [30;0];
numbands = 8;
beamformer = phased.SubbandPhaseShiftBeamformer('SensorArray',array,...
   'Direction',direction,...
   'OperatingFrequency',fc,'PropagationSpeed',c,...
   'SampleRate',1e3,...
   'WeightsOutputPort',true,'SubbandsOutputPort',true,...
   'NumSubbands',numbands);
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rx = ones(numbands,numels);
[y,w,centerfreqs] = beamformer(rx);

Plot the response pattern of the array using the weights and center frequencies from the
beamformer.

pattern(array,centerfreqs.',[-180:180],0,'Weights',w,'CoordinateSystem','rectangular',...
    'PlotStyle','waterfall','Type','powerdb','PropagationSpeed',c)

The above plot shows the beamformed pattern at the center frequency of each subband.

Plot the response pattern at three frequencies in two-dimensions.

centerfreqs = fftshift(centerfreqs);
w = fftshift(w,2);
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idx = [1,5,8];
pattern(array,centerfreqs(idx).',[-180:180],0,'Weights',w(:,idx),'CoordinateSystem','rectangular',...
    'PlotStyle','overlay','Type','powerdb','PropagationSpeed',c)
legend('Location','South')

This plot shows that the main beam direction remains constant while the beamwidth
decreases with frequency.
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Time-Delay Beamforming of Microphone ULA Array
This example shows how to perform wideband conventional time-delay beamforming with
a microphone array of omnidirectional elements. Create an acoustic (pressure wave)
chirp signal. The chirp signal has a bandwidth of 1 kHz and propagates at a speed of 340
m/s at ground level.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

c = 340;
t = linspace(0,1,50e3)';
sig = chirp(t,0,1,1000);

Collect the acoustic chirp with a ten-element ULA. Use omnidirectional microphone
elements spaced less than one-half the wavelength at the 50 kHz sampling frequency. The
chirp is incident on the ULA with an angle of 60∘ azimuth and 0∘ elevation. Add random
noise to the signal.

microphone = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 20e3]);
array = phased.ULA('Element',microphone,'NumElements',10,...
    'ElementSpacing',0.01);
collector = phased.WidebandCollector('Sensor',array,'SampleRate',5e4,...
    'PropagationSpeed',c,'ModulatedInput',false);
sigang = [60;0];
rsig = collector(sig,sigang);
rsig = rsig + 0.1*randn(size(rsig));

Apply a wideband conventional time-delay beamformer to improve the SNR of the
received signal.

beamformer = phased.TimeDelayBeamformer('SensorArray',array,...
    'SampleRate',5e4,'PropagationSpeed',c,'Direction',sigang);
y = beamformer(rsig);

subplot(2,1,1)
plot(t(1:5000),real(rsig(1:5e3,5)))
axis([0,t(5000),-0.5,1])
title('Signal (real part) at the 5th element of the ULA')
subplot(2,1,2)
plot(t(1:5000),real(y(1:5e3)))
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axis([0,t(5000),-0.5,1])
title('Signal (real part) with time-delay beamforming')
xlabel('Seconds')
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Visualization of Wideband Beamformer Performance
This example shows how to plot the response of an acoustic microphone element and an
array of microphone elements to validate the performance of a beamformer. The array
must maintain an acceptable array pattern throughout the bandwidth.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Create an 11-element uniform linear array (ULA) of microphones using cosine antenna
elements as microphones. The phased.CosineAntennaElement System object™ is
general enough to be used as a microphone element as well because it creates or receives
a scalar field. You need to change the response frequencies to the audible range. In
addition make sure the PropagationSpeed parameter in the array pattern methods
are set to the speed of sound in air.

c = 340;
freq = [1000 2750];
fc = 2000;
numels = 11;
microphone = phased.CosineAntennaElement('FrequencyRange',freq);
array = phased.ULA('NumElements',numels,...
   'ElementSpacing',0.5*c/fc,'Element',microphone);

Plot the response pattern of the microphone element over a set of frequencies.

plotFreq = linspace(min(freq),max(freq),15);
pattern(microphone,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...
    'PlotStyle','waterfall','Type','powerdb')
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This plot shows that the element pattern is constant over the entire bandwidth.

Plot the response pattern of an 11-element array over the same set of frequencies.

pattern(array,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...
    'PlotStyle','waterfall','Type','powerdb','PropagationSpeed',c)
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This plot shows that the element pattern mainlobe decreases with frequency.

Apply a subband phase shift beamformer to the array. The direction of interest is 30°
azimuth and 0° elevation. There are 8 subbands.

direction = [30;0];
numbands = 8;
beamformer = phased.SubbandPhaseShiftBeamformer('SensorArray',array,...
   'Direction',direction,...
   'OperatingFrequency',fc,'PropagationSpeed',c,...
   'SampleRate',1e3,...
   'WeightsOutputPort',true,'SubbandsOutputPort',true,...
   'NumSubbands',numbands);
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rx = ones(numbands,numels);
[y,w,centerfreqs] = beamformer(rx);

Plot the response pattern of the array using the weights and center frequencies from the
beamformer.

pattern(array,centerfreqs.',[-180:180],0,'Weights',w,'CoordinateSystem','rectangular',...
    'PlotStyle','waterfall','Type','powerdb','PropagationSpeed',c)

The above plot shows the beamformed pattern at the center frequency of each subband.

Plot the response pattern at three frequencies in two-dimensions.

centerfreqs = fftshift(centerfreqs);
w = fftshift(w,2);

 Visualization of Wideband Beamformer Performance

5-31



idx = [1,5,8];
pattern(array,centerfreqs(idx).',[-180:180],0,'Weights',w(:,idx),'CoordinateSystem','rectangular',...
    'PlotStyle','overlay','Type','powerdb','PropagationSpeed',c)
legend('Location','South')

This plot shows that the main beam direction remains constant while the beamwidth
decreases with frequency.
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Direction-of-Arrival Estimation

• “Beamscan Direction-of-Arrival Estimation” on page 6-2
• “Super-Resolution DOA Estimation” on page 6-4
• “MUSIC Super-Resolution DOA Estimation” on page 6-8
• “Target Tracking Using Sum-Difference Monopulse Radar” on page 6-14
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Beamscan Direction-of-Arrival Estimation
This example shows how to use the nonparametric beamscan technique to estimate the
direction of arrival (DOA) of signals. The beamscan algorithm estimates the DOAs by
scanning the array beam over a region of interest. The algorithm computes the output
power for each beamscan angle and identifies the maxima as the DOA estimates.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Construct a ULA consisting of ten elements. Assume the carrier frequency of the
incoming narrowband sources is 1 GHz.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
sULA = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);
sULA.Element.FrequencyRange = [8e8 1.2e9];

Assume that there is a wavefield incident on the ULA consisting of two linear FM pulses.
The DOAs of the two sources are 30° azimuth and 60° azimuth. Both sources have
elevation angles of 0°.

waveform = phased.LinearFMWaveform('SweepBandwidth',1e5,...
    'PulseWidth',5e-6,'OutputFormat','Pulses','NumPulses',1);
sig1 = waveform();
sig2 = sig1;
ang1 = [30; 0];
ang2 = [60;0];
arraysig = collectPlaneWave(sULA,[sig1 sig2],[ang1 ang2],fc);
rng default
npower = 0.01;
noise = sqrt(npower/2)*...
    (randn(size(arraysig)) + 1i*randn(size(arraysig)));
rxsig = arraysig + noise;

Implement a beamscan DOA estimator. Output the DOA estimates, and plot the spatial
spectrum.

estimator = phased.BeamscanEstimator('SensorArray',sULA,...
    'OperatingFrequency',fc,'ScanAngles',-90:90,...
    'DOAOutputPort',true,'NumSignals',2);
[y,sigang] = estimator(rxsig);
plotSpectrum(estimator)
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See Also

Related Examples
• “Super-Resolution DOA Estimation” on page 6-4

 See Also
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Super-Resolution DOA Estimation
This example shows how to estimate angles of arrival from two separate signal sources
when both angles fall within the main lobe of the array response a uniform linear array
(ULA). In this case, a beamscan DOA estimator cannot resolve the two sources. However,
a super-resolution DOA estimator using the root MUSIC algorithm is able to do so.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Plot the array response of the ULA. Zoom in on the main lobe.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
array = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);
array.Element.FrequencyRange = [8e8 1.2e9];
plotResponse(array,fc,physconst('LightSpeed'))
axis([-25 25 -30 0]);
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Receive two signal sources with DOAs separated by 10°

ang1 = [30; 0];
ang2 = [40; 0];
Nsnapshots = 1000;
rng default
npower = 0.01;
rxsig = sensorsig(getElementPosition(array)/lambda,...
   Nsnapshots,[ang1 ang2],npower);

Estimate the directions of arrival using the beamscan estimator. Because both DOAs fall
inside the main lobe of the array response, the beamscan DOA estimator cannot resolve
them as separate sources.
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beamscanestimator = phased.BeamscanEstimator('SensorArray',array,...
    'OperatingFrequency',fc,'ScanAngles',-90:90,...
    'DOAOutputPort',true,'NumSignals',2);
[~,sigang] = beamscanestimator(rxsig);
plotSpectrum(beamscanestimator)

Use the super-resolution DOA estimator to estimate the two directions. This estimator
offers better resolution than the nonparametric beamscan estimator.

MUSICestimator = phased.RootMUSICEstimator('SensorArray',array,...
    'OperatingFrequency',fc,'NumSignalsSource','Property',...
    'NumSignals',2,'ForwardBackwardAveraging',true);
doa_est = MUSICestimator(rxsig)
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doa_est = 1×2

   40.0091   30.0048

This estimator correctly identifies the two distinct directions of arrival.

See Also
phased.RootMUSICEstimator

Related Examples
• “Beamscan Direction-of-Arrival Estimation” on page 6-2
• High Resolution Direction of Arrival Estimation

 See Also
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MUSIC Super-Resolution DOA Estimation
In this section...
“Signal Model” on page 6-8
“Signal and Noise Subspaces” on page 6-9
“Root-MUSIC” on page 6-10
“Spatial Smoothing of Correlated Sources” on page 6-11

MUltiple SIgnal Classification (MUSIC) is a high-resolution direction-finding algorithm
based on the eigenvalue decomposition of the sensor covariance matrix observed at an
array. MUSIC belongs to the family of subspace-based direction-finding algorithms.

Signal Model
The signal model relates the received sensor data to the signals emitted by the source.
Assume that there are D uncorrelated or partially correlated signal sources, sd(t). The
sensor data, xm(t), consists of the signals, as received at the array, together with noise,
nm(t). A sensor data snapshot is the sensor data vector received at the M elements of an
array at a single time t.

x(t) = As(t) + n(t)
s(t) = [s1(t), s2(t), …, sD(t))]′
A = [a(θ1) a(θ2) … a(θD)]

• x(t) is an M-by-1 vector of received snapshot of sensor data which consist of signals
and additive noise.

• A is an M-by-D matrix containing the arrival vectors. An arrival vector consists of the
relative phase shifts at the array elements of the plane wave from one source. Each
column of A represents the arrival vector from one of the sources and depends on the
direction of arrival, θd. θd is the direction of arrival angle for the dth source and can
represents either the broadside angle for linear arrays or the azimuth and elevation
angle for planar or 3D arrays.

• s(t) is a D-by-1 vector of source signal values from D sources.
• n(t) is an M-by-1 vector of sensor noise values.

An important quantity in any subspace method is the sensor covariance matrix,Rx, derived
from the received signal data. When the signals are uncorrelated with the noise, the
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sensor covariance matrix has two components, the signal covariance matrix and the noise
covariance matrix.

Rx = E xxH = ARsAH + σn
2I

where Rs is the source covariance matrix. The diagonal elements of the source covariance
matrix represent source power and the off-diagonal elements represent source
correlations.

Rs = E ssH

For uncorrelated sources or even partially correlated sources, Rs is a positive-definite
Hermitian matrix and has full rank, D, equal to the number of sources.

The signal covariance matrix, ARsAH, is an M-by-M matrix, also with rank D < M.

An assumption of the MUSIC algorithm is that the noise powers are equal at all sensors
and uncorrelated between sensors.With this assumption, the noise covariance matrix
becomes an M-by-M diagonal matrix with equal values along the diagonal.

Because the true sensor covariance matrix is not known, MUSIC estimates the sensor
covariance matrix, Rx, from the sample sensor covariance matrix. The sample sensor
covariance matrix is an average of multiple snapshots of the sensor data

Rx = 1
T ∑k = 1

T
x(t)x(t)H,

where T is the number of snapshots.

Signal and Noise Subspaces
Because ARsAH has rank D, it has D positive real eigenvalues and M – D zero eigenvalues.
The eigenvectors corresponding to the positive eigenvalues span the signal subspace, Us=
[v1,...,vD]. The eigenvectors corresponding to the zero eigenvalues are orthogonal to the
signal space and span the null subspace, Un= [uD+1,...,uN]. The arrival vectors also belong
to the signal subspace, but they are eigenvectors. Eigenvectors of the null subspace are
orthogonal to the eigenvectors of the signal subspace. Null-subspace eigenvectors, ui,
satisfy this equation:

ARsAHui = 0 uHARsAHui = 0 AHui
HRs AHui = 0 AHui = 0
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Therefore the arrival vectors are orthogonal to the null subspace.

When noise is added, the eigenvectors of the sensor covariance matrix with noise present
are the same as the noise-free sensor covariance matrix. The eigenvalues increase by the
noise power. Let vi be one of the original noise-free signal space eigenvectors. Then

Rxvi = ARsAHvi + σ0
2Ivi = λi + σ0

2 vi

shows that the signal space eigenvalues increase by σ0
2.

The null subspace eigenvectors are also eigenvectors of Rx. Let ui be one of the null
eigenvectors. Then

Rxui = ARsAHui + σ0
2Iui = σ0

2ui

with eigenvalues of σ0
2 instead of zero. The null subspace becomes the noise subspace.

MUSIC works by searching for all arrival vectors that are orthogonal to the noise
subspace. To do the search, MUSIC constructs an arrival-angle-dependent power
expression, called the MUSIC pseudospectrum:

PMUSIC(ϕ ) = 1
aH(ϕ )UnUn

Ha(ϕ )

When an arrival vector is orthogonal to the noise subspace, the peaks of the
pseudospectrum are infinite. In practice, because there is noise, and because the true
covariance matrix is estimated by the sampled covariance matrix, the arrival vectors are
never exactly orthogonal to the noise subspace. Then, the angles at which PMUSIC has
finite peaks are the desired directions of arrival. Because the pseudospectrum can have
more peaks than there are sources, the algorithm requires that you specify the number of
sources, D, as a parameter. Then the algorithm picks the D largest peaks. For a uniform
linear array (ULA), the search space is a one-dimensional grid of broadside angles. For
planar and 3D arrays, the search space is a two-dimensional grid of azimuth and elevation
angles.

Root-MUSIC
For a ULA, the denominator in the pseudospectrum is a polynomial in eikdcosφ, but can
also be considered a polynomial in the complex plane. In this cases, you can use root-
finding methods to solve for the roots, zi. These roots do not necessarily lie on the unit
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circle. However, Root-MUSIC assumes that the D roots closest to the unit circle
correspond to the true source directions. Then you can compute the source directions
from the phase of the complex roots.

Spatial Smoothing of Correlated Sources
When some of the D source signals are correlated, Rs is rank deficient, meaning that it
has fewer than D nonzero eigenvalues. Therefore, the number of zero eigenvalues of
ARsAH exceeds the number, M – D, of zero eigenvalues for the uncorrelated source case.
MUSIC performance degrades when signals are correlated, as occurs in a multipath
propagation environment. A way to compensate for correlation is to use spatial
smoothing.

Spatial smoothing takes advantage of the translation properties of a uniform array.
Consider two correlated signals arriving at an L-element ULA. The source covariance
matrix, Rs is a singular 2-by-2 matrix. The arrival vector matrix is an L-by-2 matrix

A1 =

1

eikdcosφ1

⋮
ei(L− 1)kdcosφ1

1

eikdcosφ2

⋮
ei(L− 1)kdcosφ2

= a φ1 a φ2

for signals arriving from the broadside angles φ1 and φ2. The quantity k is the signal wave
number. a(φ) represents an arrival vector at the angle φ.

You can create a second array by translating the first array along its axis by one element
distance, d. The arrival matrix for the second array is

A2 =

eikdcosφ1

ei2kdcosφ1

⋮
eiLkdcosφ1

eikdcosφ2

ei2kdcosφ2

⋮
eiLkdcosφ2

= eikdcosφ1a φ1 eikdcosφ2a φ2

where the arrival vectors are equal to the original arrival vectors but multiplied by a
direction-dependent phase shift. When you translate the original array J –1 more times,
you get J copies of the array. If you form a single array from all these copies, then the
length of the single array is M = L + (J – 1).
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In practice, you start with an M-element array and form J overlapping subarrays. The
number of elements in each subarray is L = M – J + 1. The following figure shows the
relationship between the overall length of the array, M, the number of subarrays, J, and
the length of each subarray, L.

For the pth subarray, the source signal arrival matrix is

Ap = eik p− 1 dcosφ1a φ1 eik p− 1 dcosφ2a φ2

= a φ1 a φ2
eik p− 1 dcosφ1 0

0 eik p− 1 dcosφ2
= A1Pp− 1

P =
eikdcosφ1 0

0 eikdcosφ2
.

The original arrival vector matrix is postmultiplied by a diagonal phase matrix.

The last step is averaging the signal covariance matrices over all J subarrays to form the
averaged signal covariance matrix, Ravg

s. The average signal covariance matrix depends
on the smoothed source covariance matrix, Rsmooth.
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Rs
avg = A1

1
J ∑p = 1

J
Pp− 1Rs Pp− 1 H A1

H = A1RsmoothA1
H

Rsmooth = 1
J ∑p = 1

J
Pp− 1Rs Pp− 1 H .

You can show that the diagonal elements of the smoothed source covariance matrix are
the same as the diagonal elements of the original source covariance matrix.

Rii
smooth = 1

J ∑p = 1

J
Pp− 1

im Rs mn Pp− 1
ni

H = 1
J ∑p = 1

J
Rs = Rs ii

However, the off-diagonal elements are reduced. The reduction factor is the beam pattern
of a J-element array.

Ri j
smooth = 1

J ∑p = 1

J
eikd(p− 1) cosφ1− cosφ2 Rs i j = 1

J
sin kd J cosφ1− cosφ2
sin kd cosφ1− cosφ2

Rs i j

In summary, you can reduce the degrading effect of source correlation by forming
subarrays and using the smoothed covariance matrix as input to the MUSIC algorithm.
Because of the beam pattern, larger angular separation of sources leads to reduced
correlation.

Spatial smoothing for linear arrays is easily extended to 2D and 3D uniform arrays.
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Target Tracking Using Sum-Difference Monopulse Radar
This example shows how to use the phased.SumDifferenceMonopulseTracker
System object� to track a moving target. The
phased.SumDifferenceMonopulseTracker tracker solves for the direction of a target
from signals arriving on a uniform linear array (ULA). The sum-difference monopulse
algorithm requires a prior estimate of the target direction which is assumed to be close to
the actual direction. In a tracker, the current estimate serves as the prior information for
the next estimate. The target is a narrowband 500 MHz emitter moving at a constant
velocity of 800 kph. For a ULA array, the steering vector depends only upon the broadside
angle. The broadside angle is the angle between the source direction and a plane normal
to the linear array. Any arriving signal is specified by its broadside angle.

Create the target platform and define its motion

Assume the target is located at [0,10000,20000] with respect to the radar in the
radar's local coordinate system. Assume that the target is moving along the y-axis toward
the radar at 800 kph.

x0 = [0,10000,20000].';
v0 = -800;
v0 = v0*1000/3600;
targetplatform = phased.Platform(x0,[0,v0,0].');

Set up the ULA array

The monopulse tracker uses a ULA array which consists of 8 isotropic antenna elements.
The element spacing is set to one-half the signal wavelength.

fc = 500e6;
c = physconst('LightSpeed');
lam = c/fc;
antenna = phased.IsotropicAntennaElement('FrequencyRange',[100e6,800e6],...
    'BackBaffled',true);
array = phased.ULA('Element',antenna,'NumElements',8,...
    'ElementSpacing',lam/2);

Assume a narrowband signal. This kind of signal can be simulated using the
phased.SteeringVector System object.

steervec = phased.SteeringVector('SensorArray',array);
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Tracking Loop

Initialize the tracking loop. Create the phased.SumDifferenceMonopulseTracker
System object.

tracker = phased.SumDifferenceMonopulseTracker('SensorArray',array,...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc);

At each time step, compute the broadside angle of the target with respect to the array.
Set the step time to 0.5 seconds.

T  = 0.5;
nsteps = 40;
t = [1:nsteps]*T;

Setup data vectors for storing and displaying results

rng = zeros(1,nsteps);
broadang_actual = zeros(1,nsteps);
broadang_est = zeros(1,nsteps);
angerr = zeros(1,nsteps);

Step through the tracking loop. First provide an estimate of the initial broadside angle. In
this simulation, the actual broadside angle is known but add an error of five degrees.

[tgtrng,tgtang_actual] = rangeangle(x0,[0,0,0].');
broadang0 = az2broadside(tgtang_actual(1),tgtang_actual(2));
broadang_prev = broadang0 + 5.0; % add some sort of error

1 Compute the actual broadside angle, broadang_actual.
2 Compute the signal, signl, from the actual broadside angle, using the

phased.SteeringVector System object.
3 Using the phased.SumDifferenceMonopulseTracker tracker, estimate the

broadside angle, broadang_est, from the signal. The broadside angle derived from
a previous step serves as an initial estimate for the current step.

4 Compute the difference between the estimated broadside angle, broadang_est, and
actual broadside angle, broadang_actual. This is a measure of how good the
solution is.

for n = 1:nsteps
    x = targetplatform(T);
    [rng(n),tgtang_actual] = rangeangle(x,[0,0,0].');
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    broadang_actual(n) = az2broadside(tgtang_actual(1),tgtang_actual(2));
    signl = steervec(fc,broadang_actual(n)).';
    broadang_est(n) = tracker(signl,broadang_prev);
    broadang_prev = broadang_est(n);
    angerr(n) = broadang_est(n) - broadang_actual(n);
end

Results

Plot the range as a function of time showing the point of closest approach.

plot(t,rng/1000,'-o')
xlabel('time (sec)')
ylabel('Range (km)')
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Plot the estimated broadside angle as a function of time.

plot(t,broadang_actual,'-o')
xlabel('time (sec)')
ylabel('Broadside angle (deg)')

A monopulse tracker cannot solve for the direction angle if the angular separation
between samples is too large. The maximum allowable angular separation is
approximately one-half the null-to-null beamwidth of the array. For an 8-element, half-
wavelength-spaced ULA, the half-beamwidth is approximately 14.3 degrees at broadside.
In this simulation, the largest angular difference between samples is

maxangdiff = max(abs(diff(broadang_est)));
disp(maxangdiff)
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    0.2942

The angular separation between samples is less than the half-beamwidth.

Plot the angle error. This is the difference between the estimated angle and the actual
angle. The plot shows a very small error, on the order of microdegrees.

plot(t,angerr,'-o')
xlabel('time (sec)')
ylabel('Angle error (deg)')
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See Also
Functions
musicdoa

System Objects
phased.MUSICEstimator | phased.MUSICEstimator2D

 See Also
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Space-Time Adaptive Processing
(STAP)

• “Angle-Doppler Response” on page 7-2
• “Displaced Phase Center Antenna Pulse Canceller” on page 7-9
• “Adaptive Displaced Phase Center Antenna Pulse Canceller” on page 7-15
• “Sample Matrix Inversion Beamformer” on page 7-23
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Angle-Doppler Response
In this section...
“Benefits of Visualizing Angle-Doppler Response” on page 7-2
“Angle-Doppler Response of Stationary Array to Stationary Target” on page 7-2
“Angle-Doppler Response to Stationary Target at Moving Array” on page 7-5

Benefits of Visualizing Angle-Doppler Response
Visualizing a signal in the angle-Doppler domain can help you identify characteristics of
the signal in direction and speed. You can distinguish among targets moving at various
speeds in various directions. If a transmitter platform is stationary, returns from
stationary targets map to zero in the Doppler domain while returns from moving targets
exhibit a nonzero Doppler shift. If you visualize the array response in the angle-Doppler
domain, a stationary target produces a response at a specified angle and zero Doppler.

You can use the phased.AngleDopplerResponse object to visualize the angle-Doppler
response of input data. The phased.AngleDopplerResponse object uses a
conventional narrowband (phase shift) beamformer and an FFT-based Doppler filter to
compute the angle-Doppler response.

Angle-Doppler Response of Stationary Array to Stationary
Target
Display the angle-Doppler response of a stationary array to a stationary target. The array
is a six-element uniform linear array (ULA) located at the global origin (0,0,0). The target
is located at (5000,5000,0) meters and has a nonfluctuating radar cross section (RCS) of 1
square meter.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Construct the objects needed to simulate the target response at the array.

antenna = phased.IsotropicAntennaElement...
    ('FrequencyRange',[8e8 5e9],'BackBaffled',true);
lambda = physconst('LightSpeed')/4e9;
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array = phased.ULA(6,'Element',antenna,'ElementSpacing',lambda/2);
waveform = phased.RectangularWaveform('PulseWidth',2e-006,...
    'PRF',5e3,'SampleRate',1e6,'NumPulses',1);
radiator = phased.Radiator('Sensor',array,...
    'PropagationSpeed',physconst('LightSpeed'),...
    'OperatingFrequency',4e9);
collector = phased.Collector('Sensor',array,...
    'PropagationSpeed',physconst('LightSpeed'),...
    'OperatingFrequency',4e9);
txplatform = phased.Platform('InitialPosition',[0;0;0],...
    'Velocity',[0;0;0]);
target = phased.RadarTarget('MeanRCS',1,'Model','nonfluctuating');
targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],...
    'Velocity',[0;0;0]);
freespace = phased.FreeSpace('OperatingFrequency',4e9,...
    'TwoWayPropagation',false,'SampleRate',1e6);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...
    'EnableInputPort',true,'SampleRate',1e6,'Gain',40);
transmitter = phased.Transmitter('PeakPower',1e4,...
    'InUseOutputPort',true,'Gain',40);

Propagate ten rectangular pulses to and from the target, and collect the responses at the
array.

PRF = 5e3;
NumPulses = 10;
wav = waveform();
tgtloc = targetplatform.InitialPosition;
txloc = txplatform.InitialPosition;
M = waveform.SampleRate*1/PRF; 
N = array.NumElements;
rxsig = zeros(M,N,NumPulses);

for n = 1:NumPulses
    % get angle to target
    [~,tgtang] = rangeangle(tgtloc,txloc);
    % transmit pulse
    [txsig,txstatus] = transmitter(wav);
    % radiate pulse
    txsig = radiator(txsig,tgtang);
    % propagate pulse to target
    txsig = freespace(txsig,txloc,tgtloc,[0;0;0],[0;0;0]);
    % reflect pulse off stationary target
    txsig = target(txsig);
    % propagate pulse to array
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    txsig = freespace(txsig,tgtloc,txloc,[0;0;0],[0;0;0]);
    % collect pulse
    rxsig(:,:,n) = collector(txsig,tgtang);
    % receive pulse
    rxsig(:,:,n) = receiver(rxsig(:,:,n),~txstatus);
end

Find and plot the angle-Doppler response. Then, add the label +Target at the expected
azimuth angle and Doppler frequency.

tgtdoppler = 0; 
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);
tgtcell = val2ind(tgtrng,...
    physconst('LightSpeed')/(2*waveform.SampleRate));
snapshot = shiftdim(rxsig(tgtcell,:,:)); % Remove singleton dim
response = phased.AngleDopplerResponse('SensorArray',array,...
    'OperatingFrequency',4e9, ...
    'PropagationSpeed',physconst('LightSpeed'),...
    'PRF',PRF, 'ElevationAngle',tgtelang);
plotResponse(response,snapshot);
text(tgtazang,tgtdoppler,'+Target');
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As expected, the angle-Doppler response shows the greatest response at zero Doppler
and 45° azimuth.

Angle-Doppler Response to Stationary Target at Moving Array
This example illustrates the nonzero Doppler shift exhibited by a stationary target in the
presence of array motion. In general, this nonzero shift complicates the detection of slow-
moving targets because the motion-induced Doppler shift and spread of the clutter
returns obscure the Doppler shifts of such targets.
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Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

The scenario in this example is identical to that of “Angle-Doppler Response of Stationary
Array to Stationary Target” on page 7-2 except that the ULA is moving at a constant
velocity. For convenience, the MATLAB™ code to set up the objects is repeated. Notice
that the InitialPosition and Velocity properties of the txplatform System
object™ have changed. The InitialPosition property value is set to simulate an
airborne ULA. The motivation for selecting the particular value of the Velocity property
is explained in “Applicability of DPCA Pulse Canceller” on page 7-9.

antenna = phased.IsotropicAntennaElement...
    ('FrequencyRange',[8e8 5e9],'BackBaffled',true);
lambda = physconst('LightSpeed')/4e9;
array = phased.ULA(6,'Element',antenna,'ElementSpacing',lambda/2);
waveform = phased.RectangularWaveform('PulseWidth',2e-006,...
    'PRF',5e3,'SampleRate',1e6,'NumPulses',1);
radiator = phased.Radiator('Sensor',array,...
    'PropagationSpeed',physconst('LightSpeed'),...
    'OperatingFrequency',4e9);
collector = phased.Collector('Sensor',array,...
    'PropagationSpeed',physconst('LightSpeed'),...
    'OperatingFrequency',4e9);
vy = (array.ElementSpacing*waveform.PRF)/2;
txplatform = phased.Platform('InitialPosition',[0;0;3e3],...
    'Velocity',[0;vy;0]);
target = phased.RadarTarget('MeanRCS',1,'Model','nonfluctuating');
tgtvel = [0;0;0];
targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],...
    'Velocity',tgtvel);
freespace = phased.FreeSpace('OperatingFrequency',4e9,...
    'TwoWayPropagation',false,'SampleRate',1e6);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...
    'EnableInputPort',true,'SampleRate',1e6,'Gain',40);
transmitter = phased.Transmitter('PeakPower',1e4,...
    'InUseOutputPort',true,'Gain',40);

Transmit ten rectangular pulses toward the target as the ULA is moving. Then, collect the
received echoes.

PRF = 5e3;
NumPulses = 10;
wav = waveform();
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tgtloc = targetplatform.InitialPosition;
M = waveform.SampleRate*1/PRF; 
N = array.NumElements;
rxsig = zeros(M,N,NumPulses);
fasttime = unigrid(0,1/waveform.SampleRate,1/PRF,'[)');
rangebins = (physconst('LightSpeed')*fasttime)/2;

for n = 1:NumPulses
    % move transmitter
    [txloc,txvel] = txplatform(1/PRF);
    % get angle to target
    [~,tgtang] = rangeangle(tgtloc,txloc);
    % transmit pulse
    [txsig,txstatus] = transmitter(wav);
    % radiate pulse
    txsig = radiator(txsig,tgtang);
    % propagate pulse to target
    txsig = freespace(txsig,txloc,tgtloc,txvel,tgtvel);
    % reflect pulse off stationary target
    txsig = target(txsig);
    % propagate pulse to array
    txsig = freespace(txsig,tgtloc,txloc,tgtvel,txvel);
    % collect pulse
    rxsig(:,:,n) = collector(txsig,tgtang);
    % receive pulse
    rxsig(:,:,n) = receiver(rxsig(:,:,n),~txstatus);
end

Calculate the target angles and range with respect to the ULA. Then, calculate the
Doppler shift induced by the motion of the phased array.

sp = radialspeed(tgtloc,tgtvel,txloc,txvel);
tgtdoppler = 2*speed2dop(sp,lambda);
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);

The two-way Doppler shift is approximately 1626 Hz. The azimuth angle is 45° and is
identical to the value obtained in the stationary ULA example.

Plot the angle-Doppler response.

tgtcell = val2ind(tgtrng,...
    physconst('LightSpeed')/(2*waveform.SampleRate));
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snapshot = shiftdim(rxsig(tgtcell,:,:)); % Remove singleton dim
hadresp = phased.AngleDopplerResponse('SensorArray',array,...
    'OperatingFrequency',4e9, ...
    'PropagationSpeed',physconst('LightSpeed'),...
    'PRF',PRF, 'ElevationAngle',tgtelang);
plotResponse(hadresp,snapshot);
text(tgtazang,tgtdoppler,'+Target');

The angle-Doppler response shows the greatest response at 45° azimuth at the expected
Doppler shift.
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Displaced Phase Center Antenna Pulse Canceller
In this section...
“When to Use the DPCA Pulse Canceller” on page 7-9
“DPCA Pulse Canceller to Reject Clutter” on page 7-9

When to Use the DPCA Pulse Canceller
In a moving target indication (MTI) radar, clutter returns can make it more difficult to
detect and track the targets of interest. A rudimentary way to mitigate the effects of
clutter returns in such a system is to implement a displaced phase center antenna (DPCA)
pulse canceller on the slow-time data.

You can implement a DPCA pulse canceller with phased.DPCACanceller. This
implementation assumes that the entire array is used on transmit. On receive, the array is
divided into two subarrays. The phase centers of the subarrays are separated by twice the
distance the platform moves in one pulse repetition interval.

Applicability of DPCA Pulse Canceller

The DPCA pulse canceller is applicable when both these conditions are true:

• Clutter is stationary across pulses.
• The motion satisfies

vT = d/2  (7-1)

where:

• v indicates the speed of the platform
• T represents the pulse repetition interval
• d indicates the interelement spacing of the array

DPCA Pulse Canceller to Reject Clutter
This example implements a DPCA pulse canceller for clutter rejection. Assume you have
an airborne radar platform modeled by a six-element ULA operating at 4 GHz. The array
elements are spaced at one-half the wavelength of the 4 GHz carrier frequency. The radar
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emits ten rectangular pulses two microseconds in duration with a PRF of 5 kHz. The
platform moves along the array axis with a speed equal to one-half the product of the
element spacing and the PRF. DPCA pulse cancellation is applicable because vT = d/2
where

• v indicates the speed of the platform
• T represents the pulse repetition interval
• d indicates the interelement spacing of the array

The target has a nonfluctuating RCS of 1 square meter and moves with a constant
velocity vector of (15,15,0).

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

PRF = 5e3;
fc = 4e9;
fs = 1e6;
c = physconst('LightSpeed');
antenna = phased.IsotropicAntennaElement...
    ('FrequencyRange',[8e8 5e9],'BackBaffled',true);
lambda = c/fc;
array = phased.ULA(6,'Element',antenna,'ElementSpacing',lambda/2);
waveform = phased.RectangularWaveform('PulseWidth',2e-6,...
    'PRF',PRF,'SampleRate',fs,'NumPulses',1);
radiator = phased.Radiator('Sensor',array,...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc);
collector = phased.Collector('Sensor',array,...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc);
vy = (array.ElementSpacing*PRF)/2;
transmitplatform = phased.Platform('InitialPosition',[0;0;3e3],...
    'Velocity',[0;vy;0]);
clutter = phased.ConstantGammaClutter('Sensor',array,...
    'PropagationSpeed',radiator.PropagationSpeed,...
    'OperatingFrequency',radiator.OperatingFrequency,...
    'SampleRate',fs,...
    'TransmitSignalInputPort',true,...
    'PRF',PRF,...
    'Gamma',surfacegamma('woods',radiator.OperatingFrequency),...
    'EarthModel','Flat',...
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    'BroadsideDepressionAngle',0,...
    'MaximumRange',radiator.PropagationSpeed/(2*PRF),...
    'PlatformHeight',transmitplatform.InitialPosition(3),...
    'PlatformSpeed',norm(transmitplatform.Velocity),...
    'PlatformDirection',[90;0]);
target = phased.RadarTarget('MeanRCS',1,...
    'Model','Nonfluctuating','OperatingFrequency',fc);
targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],...
    'Velocity',[15;15;0]);
channel = phased.FreeSpace('OperatingFrequency',fc,...
    'TwoWayPropagation',false,'SampleRate',fs);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...
    'EnableInputPort',true,'SampleRate',fs,'Gain',40);
transmitter = phased.Transmitter('PeakPower',1e4,...
    'InUseOutputPort',true,'Gain',40);

Propagate ten rectangular pulses to target and back, and collect the responses at the
array. Also, compute clutter echoes using the constant gamma model with a gamma value
corresponding to wooded terrain.

NumPulses = 10;
wav = waveform();
M = fs/PRF; 
N = array.NumElements;
rxsig = zeros(M,N,NumPulses);
csig = zeros(M,N,NumPulses);
fasttime = unigrid(0,1/fs,1/PRF,'[)');
rangebins = (c*fasttime)/2;
clutter.SeedSource = 'Property';
clutter.Seed = 5;

for n = 1:NumPulses
    [txloc,txvel] = transmitplatform(1/PRF); % move transmitter
    [tgtloc,tgtvel] = targetplatform(1/PRF); % move target
    [~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target
    [txsig1,txstatus] = transmitter(wav);  % transmit pulse
    csig(:,:,n) = clutter(txsig1(abs(txsig1)>0)); % collect clutter
    txsig = radiator(txsig1,tgtang); % radiate pulse
    txsig = channel(txsig,txloc,tgtloc,...
       txvel,tgtvel); % propagate to target
    txsig = target(txsig);  % reflect off target
    txsig = channel(txsig,tgtloc,txloc,...
       tgtvel,txvel); % propagate to array
    rxsig(:,:,n) = collector(txsig,tgtang); % collect pulse
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    rxsig(:,:,n) = receiver(rxsig(:,:,n) + csig(:,:,n),...
        ~txstatus); % receive pulse plus clutter return 
end

Determine the target range, range gate, and two-way Doppler shift.

sp = radialspeed(tgtloc,tgtvel,txloc,txvel);
tgtdoppler = 2*speed2dop(sp,lambda); 
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);
tgtcell = val2ind(tgtrng,c/(2*fs));

Use noncoherent pulse integration to visualize the signal received by the ULA for the first
of the ten pulses. Mark the target range gate with a vertical dashed line.

firstpulse = pulsint(rxsig(:,:,1),'noncoherent');
plot([tgtrng/1e3 tgtrng/1e3],[0 0.1],'-.',rangebins/1e3,firstpulse)
title('Noncoherent Integration of 1st Pulse at the ULA')
xlabel('Range (km)')
ylabel('Magnitude');
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The large-magnitude clutter returns obscure the presence of the target. Apply the DPCA
pulse canceller to reject the clutter.

canceller = phased.DPCACanceller('SensorArray',array,'PRF',PRF,...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc,...
    'Direction',[0;0],'Doppler',tgtdoppler,...
    'WeightsOutputPort',true);
[y,w] = canceller(rxsig,tgtcell);

Plot the result of applying the DPCA pulse canceller. Mark the target range gate with a
vertical dashed line.
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plot([tgtrng/1e3,tgtrng/1e3],[0 3.5e-5],'-.',rangebins/1e3,abs(y))
title('DPCA Canceller Output')
xlabel('Range (km)')
ylabel('Magnitude')

The DPCA pulse canceller has significantly rejected the clutter. As a result, the target is
visible at the expected range gate.
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Adaptive Displaced Phase Center Antenna Pulse
Canceller

In this section...
“When to Use the Adaptive DPCA Pulse Canceller” on page 7-15
“Adaptive DPCA Pulse Canceller To Reject Clutter and Interference” on page 7-15

When to Use the Adaptive DPCA Pulse Canceller
Consider an airborne radar system that needs to suppress clutter returns and possibly
jammer interference. Under any of the following conditions, you might choose an adaptive
DPCA (ADPCA) pulse canceller for suppressing these effects.

• Jamming and other interference effects are substantial. The DPCA pulse canceller is
susceptible to interference because the DPCA pulse canceller does not use the
received data.

• The sample matrix inversion (SMI) algorithm is inapplicable because of computational
expense or a rapidly changing environment.

The phased.ADPCAPulseCanceller object implements an ADPCA pulse canceller. This
pulse canceller uses the data received from two consecutive pulses to estimate the space-
time interference covariance matrix. In particular, the object lets you specify:

• The number of training cells. The algorithm uses training cells to estimate the
interference. In general, a larger number of training cells leads to a better estimate of
interference.

• The number of guard cells close to the target cells. The algorithm recognizes guard
cells to prevent target returns from contaminating the estimate of the interference.

Adaptive DPCA Pulse Canceller To Reject Clutter and
Interference
This example implements an adaptive DPCA pulse canceller for clutter and interference
rejection. The scenario is identical to the one in “DPCA Pulse Canceller to Reject Clutter”
on page 7-9 except that a stationary broadband barrage jammer is added at (3.5e3,1e3,0).
The jammer has an effective radiated power of 1 kW.
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To repeat the scenario for convenience, the airborne radar platform is a six-element ULA
operating at 4 GHz. The array elements are spaced at one-half the wavelength of the 4
GHz carrier frequency. The radar emits ten rectangular pulses of two μs duration with a
PRF of 5 kHz. The platform is moving along the array axis with a speed equal to one-half
the product of the element spacing and the PRF. ADPCA pulse cancellation is applicable
because vT = d/2 where

• v indicates the speed of the platform
• T represents the pulse repetition interval
• d indicates the interelement spacing of the array

The target has a nonfluctuating RCS of 1 square meter and is moving with a constant
velocity vector of (15,15,0).

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

PRF = 5e3;
fc = 4e9;
fs = 1e6;
c = physconst('LightSpeed');
antenna = phased.IsotropicAntennaElement...
    ('FrequencyRange',[8e8 5e9],'BackBaffled',true);
lambda = c/fc;
array = phased.ULA(6,'Element',antenna,'ElementSpacing',lambda/2);
waveform = phased.RectangularWaveform('PulseWidth', 2e-6,...
    'PRF',PRF,'SampleRate',fs,'NumPulses',1);
radiator = phased.Radiator('Sensor',array,...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc);
collector = phased.Collector('Sensor',array,...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc);
vy = (array.ElementSpacing * PRF)/2;
transmitterplatform = phased.Platform('InitialPosition',[0;0;3e3],...
    'Velocity',[0;vy;0]);
clutter = phased.ConstantGammaClutter('Sensor',array,...
    'PropagationSpeed',radiator.PropagationSpeed,...
    'OperatingFrequency',radiator.OperatingFrequency,...
    'SampleRate',fs,...
    'TransmitSignalInputPort',true,...
    'PRF',PRF,...
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    'Gamma',surfacegamma('woods',radiator.OperatingFrequency),...
    'EarthModel','Flat',...
    'BroadsideDepressionAngle',0,...
    'MaximumRange',radiator.PropagationSpeed/(2*PRF),...
    'PlatformHeight',transmitterplatform.InitialPosition(3),...
    'PlatformSpeed',norm(transmitterplatform.Velocity),...
    'PlatformDirection',[90;0]);
target = phased.RadarTarget('MeanRCS',1,...
    'Model','Nonfluctuating','OperatingFrequency',fc);
targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],...
    'Velocity',[15;15;0]);
jammer = phased.BarrageJammer('ERP',1e3,'SamplesPerFrame',200);
jammerplatform = phased.Platform(...
    'InitialPosition',[3.5e3; 1e3; 0],'Velocity',[0;0;0]);
channel = phased.FreeSpace('OperatingFrequency',fc,...
    'TwoWayPropagation',false,'SampleRate',fs);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...
    'EnableInputPort',true,'SampleRate',fs,'Gain',40);
transmitter = phased.Transmitter('PeakPower',1e4,...
    'InUseOutputPort',true,'Gain',40);

Propagate the ten rectangular pulses to the target and back and collect the responses at
the array. Compute clutter echoes using the constant gamma model with a gamma value
corresponding to wooded terrain. Also, propagate the jamming signal from the jammer
location to the airborne ULA.

NumPulses = 10;
wav = waveform();
M = fs/PRF;
N = array.NumElements;
rxsig = zeros(M,N,NumPulses);
csig = zeros(M,N,NumPulses);
jsig = zeros(M,N,NumPulses);
fasttime = unigrid(0,1/fs,1/PRF,'[)');
rangebins = (c * fasttime)/2;
clutter.SeedSource = 'Property';
clutter.Seed = 40543;
jammer.SeedSource = 'Property';
jammer.Seed = 96703;
receiver.SeedSource = 'Property';
receiver.Seed = 56113;
jamloc = jammerplatform.InitialPosition;

for n = 1:NumPulses
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    [txloc,txvel] = transmitterplatform(1/PRF); % move transmitter
    [tgtloc,tgtvel] = targetplatform(1/PRF); % move target
    [~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target
    [txsig,txstatus] = transmitter(wav); % transmit pulse
    csig(:,:,n) = clutter(txsig(abs(txsig)>0)); % collect clutter

    txsig = radiator(txsig,tgtang); % radiate pulse
    txsig = channel(txsig,txloc,tgtloc,...
       txvel,tgtvel); % propagate pulse to target
    txsig = target(txsig); % reflect off target
    txsig = channel(txsig,tgtloc,txloc,...
       tgtvel,txvel); % propagate to array
    rxsig(:,:,n) = collector(txsig,tgtang); % collect pulse
    
    jamsig = jammer(); % generate jammer signal
    [~,jamang] = rangeangle(jamloc,txloc); % angle from jammer to transmitter
    jamsig = channel(jamsig,jamloc,txloc,...
       [0;0;0],txvel); % propagate jammer signal
    jsig(:,:,n) = collector(jamsig,jamang); % collect jammer signal
    
    rxsig(:,:,n) = receiver(...
        rxsig(:,:,n) + csig(:,:,n) + jsig(:,:,n),...
        ~txstatus); % receive pulse plus clutter return plus jammer signal   
end

Determine the target range, range gate, and two-way Doppler shift.

sp = radialspeed(tgtloc, targetplatform.Velocity, ...
    txloc, transmitterplatform.Velocity);
tgtdoppler = 2*speed2dop(sp,lambda);
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);
tgtcell = val2ind(tgtrng,c/(2*fs));

Process the array responses using the nonadaptive DPCA pulse canceller. To do so,
construct the DPCA object, and apply it to the received signals.

canceller = phased.DPCACanceller('SensorArray',array,'PRF',PRF,...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc,...
    'Direction',[0;0],'Doppler',tgtdoppler,...
    'WeightsOutputPort',true);
[y,w] = canceller(rxsig,tgtcell);
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Plot the DPCA result with the target range marked by a vertical dashed line. Notice how
the presence of the interference signal has obscured the target.

plot([tgtrng/1e3,tgtrng/1e3],[0 7e-2],'-.',rangebins/1e3,abs(y))
axis tight
xlabel('Range (km)')
ylabel('Magnitude')
title('DPCA Canceller Output with Jamming')

Apply the adaptive DPCA pulse canceller. Use 100 training cells and 4 guard cells, two on
each side of the target range gate.

canceller = phased.ADPCACanceller('SensorArray',array,'PRF',PRF,...
    'PropagationSpeed',c,...
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    'OperatingFrequency',fc,...
    'Direction',[0;0],'Doppler',tgtdoppler,...
    'WeightsOutputPort',true,'NumGuardCells',4,...
    'NumTrainingCells',100);
[y_adpca,w_adpca] = canceller(rxsig,tgtcell);

Plot the result with the target range marked by a vertical dashed line. Notice how the
adaptive DPCA pulse canceller enables you to detect the target in the presence of the
jamming signal.

plot([tgtrng/1e3,tgtrng/1e3],[0 4e-7],'-.',rangebins/1e3,abs(y_adpca))
axis tight
title('ADPCA Canceller Output with Jamming')
xlabel('Range (km)')
ylabel('Magnitude')
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Examine the angle-Doppler response. Notice the presence of the clutter ridge in the
angle-Doppler plane and the null at the jammer’s broadside angle for all Doppler
frequencies.

angdopplerersponse = phased.AngleDopplerResponse('SensorArray',array,...
    'OperatingFrequency',fc,...
    'PropagationSpeed',c,...
    'PRF',PRF,'ElevationAngle',tgtelang);
plotResponse(angdopplerersponse,w_adpca)
title('Angle-Doppler Response with ADPCA Pulse Cancellation')
text(az2broadside(jamang(1),jamang(2)) + 10,...
    0,'\leftarrow Interference Null')
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Sample Matrix Inversion Beamformer
In this section...
“When to Use the SMI Beamformer” on page 7-23
“Sample Matrix Inversion Beamformer” on page 7-23

When to Use the SMI Beamformer
In situations where an airborne radar system needs to suppress clutter returns and
jammer interference, the system needs a more sophisticated algorithm than a DPCA pulse
canceller can provide. One option is the sample matrix inversion (SMI) algorithm. SMI is
the optimum STAP algorithm and is often used as a baseline for comparison with other
algorithms.

The SMI algorithm is computationally expensive and assumes a stationary environment
across many pulses. If you need to suppress clutter returns and jammer interference with
less computation, or in a rapidly changing environment, consider using an ADPCA pulse
canceller instead.

The phased.STAPSMIBeamformer object implements the SMI algorithm. In particular,
the object lets you specify:

• The number of training cells. The algorithm uses training cells to estimate the
interference. In general, a larger number of training cells leads to a better estimate of
interference.

• The number of guard cells close to the target cells. The algorithm recognizes guard
cells to prevent target returns from contaminating the estimate of the interference.

Sample Matrix Inversion Beamformer
This scenario is identical to the one presented in “Adaptive DPCA Pulse Canceller To
Reject Clutter and Interference” on page 7-15. You can run the code for both examples to
compare the ADPCA pulse canceller with the SMI beamformer. The example details and
code are repeated for convenience.

To repeat the scenario for convenience, the airborne radar platform is a six-element ULA
operating at 4 GHz. The array elements are spaced at one-half the wavelength of the 4
GHz carrier frequency. The radar emits ten rectangular pulses two μs in duration with a
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PRF of 5 kHz. The platform is moving along the array axis with a speed equal to one-half
the product of the element spacing and the PRF. The target has a nonfluctuating RCS of 1
square meter and is moving with a constant velocity vector of (15,15,0). A stationary
broadband barrage jammer is located at (3.5e3,1e3,0). The jammer has an effective
radiated power of 1 kW.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

PRF = 5e3;
fc = 4e9;
fs = 1e6;
c = physconst('LightSpeed');
antenna = phased.IsotropicAntennaElement...
    ('FrequencyRange',[8e8 5e9],'BackBaffled',true);
lambda = c/fc;
array = phased.ULA(6,'Element',antenna,'ElementSpacing',lambda/2);
waveform = phased.RectangularWaveform('PulseWidth', 2e-6,...
    'PRF',PRF,'SampleRate',fs,'NumPulses',1);
radiator = phased.Radiator('Sensor',array,...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc);
collector = phased.Collector('Sensor',array,...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc);
vy = (array.ElementSpacing * PRF)/2;
transmitterplatform = phased.Platform('InitialPosition',[0;0;3e3],...
    'Velocity',[0;vy;0]);
clutter = phased.ConstantGammaClutter('Sensor',array,...
    'PropagationSpeed',radiator.PropagationSpeed,...
    'OperatingFrequency',radiator.OperatingFrequency,...
    'SampleRate',fs,...
    'TransmitSignalInputPort',true,...
    'PRF',PRF,...
    'Gamma',surfacegamma('woods',radiator.OperatingFrequency),...
    'EarthModel','Flat',...
    'BroadsideDepressionAngle',0,...
    'MaximumRange',radiator.PropagationSpeed/(2*PRF),...
    'PlatformHeight',transmitterplatform.InitialPosition(3),...
    'PlatformSpeed',norm(transmitterplatform.Velocity),...
    'PlatformDirection',[90;0]);
target = phased.RadarTarget('MeanRCS',1,...
    'Model','Nonfluctuating','OperatingFrequency',fc);

7 Space-Time Adaptive Processing (STAP)

7-24



targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],...
    'Velocity',[15;15;0]);
jammer = phased.BarrageJammer('ERP',1e3,'SamplesPerFrame',200);
jammerplatform = phased.Platform(...
    'InitialPosition',[3.5e3; 1e3; 0],'Velocity',[0;0;0]);
channel = phased.FreeSpace('OperatingFrequency',fc,...
    'TwoWayPropagation',false,'SampleRate',fs);
receiverpreamp = phased.ReceiverPreamp('NoiseFigure',0,...
    'EnableInputPort',true,'SampleRate',fs,'Gain',40);
transmitter = phased.Transmitter('PeakPower',1e4,...
    'InUseOutputPort',true,'Gain',40);

Propagate the ten rectangular pulses to and from the target and collect the responses at
the array. Compute clutter echoes using the constant gamma model with a gamma value
corresponding to wooded terrain. Also, propagate the jamming signal from the jammer
location to the airborne ULA.

NumPulses = 10;
wav = waveform();
M = fs/PRF;
N = array.NumElements;
rxsig = zeros(M,N,NumPulses);
csig = zeros(M,N,NumPulses);
jsig = zeros(M,N,NumPulses);
fasttime = unigrid(0,1/fs,1/PRF,'[)');
rangebins = (c*fasttime)/2;
clutter.SeedSource = 'Property';
clutter.Seed = 40543;
jammer.SeedSource = 'Property';
jammer.Seed = 96703;
receiverpreamp.SeedSource = 'Property';
receiverpreamp.Seed = 56113;
jamloc = jammerplatform.InitialPosition;

for n = 1:NumPulses
    [txloc,txvel] = transmitterplatform(1/PRF); % move transmitter
    [tgtloc,tgtvel] = targetplatform(1/PRF); % move target
    [~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target
    [txsig,txstatus] = transmitter(wav); % transmit pulse
    csig(:,:,n) = clutter(txsig(abs(txsig)>0)); % collect clutter

    txsig = radiator(txsig,tgtang); % radiate pulse
    txsig = channel(txsig,txloc,tgtloc,...
       txvel,tgtvel); % propagate pulse to target
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    txsig = target(txsig); % reflect off target
    txsig = channel(txsig,tgtloc,txloc,...
       tgtvel,txvel); % propagate to array
    rxsig(:,:,n) = collector(txsig,tgtang); % collect pulse
    
    jamsig = jammer(); % generate jammer signal
    [~,jamang] = rangeangle(jamloc,txloc); % angle from jammer to transmitter
    jamsig = channel(jamsig,jamloc,txloc,...
       [0;0;0],txvel); % propagate jammer signal
    jsig(:,:,n) = collector(jamsig,jamang); % collect jammer signal
    
    rxsig(:,:,n) = receiverpreamp(...
        rxsig(:,:,n) + csig(:,:,n) + jsig(:,:,n),...
        ~txstatus); % receive pulse plus clutter return plus jammer signal   
end

Determine the target's range, range gate, and two-way Doppler shift.

sp = radialspeed(tgtloc, targetplatform.Velocity, ...
    txloc, transmitterplatform.Velocity);
tgtdoppler = 2*speed2dop(sp,lambda);
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);
tgtcell = val2ind(tgtrng,c/(2 * fs));

Construct an SMI beamformer object. Use 100 training cells, 50 on each side of the target
range gate. Use four guard cells, two range gates in front of the target cell and two range
gates beyond the target cell. Obtain the beamformer response and weights.

tgtang = [tgtazang; tgtelang];
beamformer = phased.STAPSMIBeamformer('SensorArray',array,...
    'PRF',PRF,'PropagationSpeed',c,...
    'OperatingFrequency',fc,...
    'Direction',tgtang,'Doppler',tgtdoppler,...
    'WeightsOutputPort',true,...
    'NumGuardCells',4,'NumTrainingCells',100);
[y,weights] = beamformer(rxsig,tgtcell);

Plot the resulting array output after beamforming.

plot([tgtrng,tgtrng],[0 5e-6],'-.',rangebins,abs(y))
axis tight
title('SMI Beamformer Output')
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xlabel('Range (meters)')
ylabel('Magnitude')

Plot the angle-Doppler response with the beamforming weights.

response = phased.AngleDopplerResponse('SensorArray',array,...
    'OperatingFrequency',4e9,'PRF',PRF,...
    'PropagationSpeed',physconst('LightSpeed'));
plotResponse(response,weights)
title('Angle-Doppler Response with SMI Beamforming Weights')

 Sample Matrix Inversion Beamformer

7-27



7 Space-Time Adaptive Processing (STAP)

7-28



Detection

• “Neyman-Pearson Hypothesis Testing” on page 8-2
• “Receiver Operating Characteristics” on page 8-7
• “Monte-Carlo ROC Simulation” on page 8-13
• “Matched Filtering” on page 8-23
• “Stretch Processing” on page 8-31
• “FMCW Range Estimation” on page 8-33
• “Range-Doppler Response” on page 8-35
• “Constant False-Alarm Rate (CFAR) Detectors” on page 8-42
• “Measure Intensity Levels Using the Intensity Scope” on page 8-50
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Neyman-Pearson Hypothesis Testing

In this section...
“Purpose of Hypothesis Testing” on page 8-2
“Support for Neyman-Pearson Hypothesis Testing” on page 8-2
“Threshold for Real-Valued Signal in White Gaussian Noise” on page 8-3
“Threshold for Two Pulses of Real-Valued Signal in White Gaussian Noise” on page 8-4
“Threshold for Complex-Valued Signals in Complex White Gaussian Noise” on page 8-5

Purpose of Hypothesis Testing
In phased-array applications, you sometimes need to decide between two competing
hypotheses to determine the reality underlying the data the array receives. For example,
suppose one hypothesis, called the null hypothesis, states that the observed data consists
of noise only. Suppose another hypothesis, called the alternative hypothesis, states that
the observed data consists of a deterministic signal plus noise. To decide, you must
formulate a decision rule that uses specified criteria to choose between the two
hypotheses.

Support for Neyman-Pearson Hypothesis Testing
When you use Phased Array System Toolbox software for applications such as radar and
sonar, you typically use the Neyman-Pearson (NP) optimality criterion to formulate your
hypothesis test.

When you choose the NP criterion, you can use npwgnthresh to determine the threshold
for the detection of deterministic signals in white Gaussian noise. The optimal decision
rule derives from a likelihood ratio test (LRT). An LRT chooses between the null and
alternative hypotheses based on a ratio of conditional probabilities.

npwgnthresh enables you to specify the maximum false-alarm probability as a
constraint. A false alarm means determining that the data consists of a signal plus noise,
when only noise is present.

For details about the statistical assumptions the npwgnthresh function makes, see the
reference page for that function.
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Threshold for Real-Valued Signal in White Gaussian Noise
This example shows how to compute empirically the probability of false alarm for a real-
valued signal in white Gaussian noise.

Determine the required signal-to-noise (SNR) in decibels for the NP detector when the
maximum tolerable false-alarm probability is 10^-3.

Pfa = 1e-3;
T = npwgnthresh(Pfa,1,'real');

Determine the actual detection threshold corresponding to the desired false-alarm
probability, assuming the variance is 1.

variance = 1;
threshold = sqrt(variance * db2pow(T));

Verify empirically that the detection threshold results in the desired false-alarm
probability under the null hypothesis. To do so, generate 1 million samples of a Gaussian
random variable, and determine the proportion of samples that exceed the threshold.

rng default
N = 1e6;
x = sqrt(variance) * randn(N,1);
falsealarmrate = sum(x > threshold)/N

falsealarmrate = 9.9500e-04

Plot the first 10,000 samples. The red horizontal line shows the detection threshold.

x1 = x(1:1e4);
plot(x1)
line([1 length(x1)],[threshold threshold],'Color','red')
xlabel('Sample')
ylabel('Value')

 Neyman-Pearson Hypothesis Testing

8-3



You can see that few sample values exceed the threshold. This result is expected because
of the small false-alarm probability.

Threshold for Two Pulses of Real-Valued Signal in White
Gaussian Noise
This example shows how to empirically verify the probability of false alarm in a system
that integrates two real-valued pulses. In this scenario, each integrated sample is the sum
of two samples, one from each pulse.
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Determine the required SNR for the NP detector when the maximum tolerable false-alarm
probability is 10−3.

pfa = 1e-3;
T = npwgnthresh(pfa,2,'real');

Generate two sets of one million samples of a Gaussian random variable.

rng default
variance = 1;
N = 1e6;
pulse1 = sqrt(variance)*randn(N,1);
pulse2 = sqrt(variance)*randn(N,1);
intpuls = pulse1 + pulse2;

Compute the proportion of samples that exceed the threshold.

threshold = sqrt(variance*db2pow(T));
falsealarmrate = sum(intpuls > threshold)/N

falsealarmrate = 9.8900e-04

The empirical false alarm rate is very close to .001

Threshold for Complex-Valued Signals in Complex White
Gaussian Noise
This example shows how to empirically verify the probability of false alarm in a system
that uses coherent detection of complex-valued signals. Coherent detection means that
the system utilizes information about the phase of the complex-valued signals.

Determine the required SNR for the NP detector in a coherent detection scheme with one
sample. Use a maximum tolerable false-alarm probability of 10−3.

pfa = 1e-3;
T = npwgnthresh(pfa,1,'coherent');

Test that this threshold empirically results in the correct false-alarm rate The sufficient
statistic in the complex-valued case is the real part of the received sample.

rng default
variance = 1;
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N = 1e6;
x = sqrt(variance/2)*(randn(N,1)+1j*randn(N,1));
threshold = sqrt(variance*db2pow(T));
falsealarmrate = sum(real(x)>threshold)/length(x)

falsealarmrate = 9.9500e-04
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Receiver Operating Characteristics
Receiver Operating Characteristic (ROC) curves present graphical summaries of a
detector's performance. You can generate ROC curves using the rocpfa and rocsnr
functions.

If you are interested in examining the effect of varying the false-alarm probability on the
probability of detection for a fixed SNR, you can use rocsnr. For example, the threshold
SNR for the Neyman-Pearson detector of a single sample in real-valued Gaussian noise is
approximately 13.5 dB. Use rocsnr to plot the probability of detection varies as a
function of the false-alarm rate at that SNR.

T = npwgnthresh(1e-6,1,'real');
rocsnr(T,'SignalType','real')
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The ROC curve lets you easily read off the probability of detection for a given false-alarm
rate.

You can use rocsnr to examine detector performance for different received signal types
at a fixed SNR.

SNR = 13.54;
[Pd_real,Pfa_real] = rocsnr(SNR,'SignalType','real',...
    'MinPfa',1e-8);
[Pd_coh,Pfa_coh] = rocsnr(SNR,...
    'SignalType','NonfluctuatingCoherent',...
    'MinPfa',1e-8);
[Pd_noncoh,Pfa_noncoh] = rocsnr(SNR,'SignalType',...
    'NonfluctuatingNoncoherent','MinPfa',1e-8);
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semilogx(Pfa_real,Pd_real)
hold on
grid on
semilogx(Pfa_coh,Pd_coh,'r')
semilogx(Pfa_noncoh,Pd_noncoh,'k')
xlabel('False-Alarm Probability')
ylabel('Probability of Detection')
legend('Real','Coherent','Noncoherent','location','southeast')
title('ROC Curve Comparison for Nonfluctuating RCS Target')
hold off

The ROC curves clearly demonstrate the superior probability of detection performance
for coherent and noncoherent detectors over the real-valued case.
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The rocsnr function accepts an SNR vector input letting you quickly examine a number
of ROC curves.

SNRs = (6:2:12);
rocsnr(SNRs,'SignalType','NonfluctuatingNoncoherent')

The graph shows that, as the SNR increases, the supports of the probability distributions
under the null and alternative hypotheses become more disjoint. Therefore, for a given
false-alarm probability, the probability of detection increases.

You can examine the probability of detection as a function of SNR for a fixed false-alarm
probability with rocpfa. To obtain ROC curves for a Swerling I target model at false-
alarm probabilities of (1e-6,1e-4,1e-2,1e-1), use

8 Detection

8-10



Pfa = [1e-6 1e-4 1e-2 1e-1];
rocpfa(Pfa,'SignalType','Swerling1')

% Use rocpfa to examine the effect of SNR on the probability of detection for a detector
using noncoherent integration with a false-alarm probability of 1e-4. Assume the target
has a nonfluctuating RCS and that you are integrating over 5 pulses.

[Pd,SNR] = rocpfa(1e-4,...
    'SignalType','NonfluctuatingNoncoherent',...
    'NumPulses',5);
figure;
plot(SNR,Pd); xlabel('SNR (dB)');
ylabel('Probability of Detection'); grid on;
title('Nonfluctuating Noncoherent Detector (5 Pulses)');
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See Also

Related Examples
• Detector Performance Analysis using ROC Curves

8 Detection

8-12



Monte-Carlo ROC Simulation
This example shows how to generate a receiver operating characteristic (ROC) curve of a
radar system using a Monte-Carlo simulation. The receiver operating characteristic
determines how well the system can detect targets while rejecting large spurious signal
values when a target is absent (false alarms). A detection system will declare presence or
absence of a target by comparing the received signal value to a preset threshold. The
probability of detection (Pd) of a target is the probability that the instantaneous signal
value is larger than the threshold whenever a target is actually present. The probability of
false alarm (Pfa) is the probability that the signal value is larger than the threshold when
a target is absent. In this case, the signal is due to noise and its properties depend on the
noise statistics. The Monte-Carlo simulation generates a very large number of radar
returns with and without a target present. The simulation computes Pd and Pfa are by
counting the proportion of signal values in each case that exceed the threshold.

A ROC curve plots Pd as a function of Pfa. The shape of a ROC curve depends on the
received SNR of the signal. If the arriving signal SNR is known, then the ROC curve
shows how well the system performs in terms of Pd and Pfa. If you specify Pd and Pfa,
then you can determine how much power is needed to achieve this requirement.

You can use the function rocsnr to compute theoretical ROC curves. This example shows
a ROC curve generated by a Monte-Carlo simulation of a single-antenna radar system and
compares that curve with a theoretical curve.

Specify Radar Requirements

Set the desired probability of detection to be 0.9 and the probability of false alarm to be
10−6. Set the maximum range of the radar to 4000 meters and the range resolution to 50
meters. Set the actual target range to 3000 meters. Set the target radar cross-section to
1.5 square meters and set the operating frequency to 10 GHz. All computations are
performed in baseband.

c = physconst('LightSpeed');
pd = 0.9;
pfa = 1e-6;
max_range = 4000;
target_range = 3000.0;
range_res = 50;
tgt_rcs = 1.5;
fc = 10e9;
lambda = c/fc;
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Any simulation that computes Pfa and pd requires processing of many signals. To keep
memory requirements low, process the signals in chunks of pulses. Set the number of
pulses to process to 45000 and set the size of each chunk to 10000.

Npulse = 45000;
Npulsebuffsize = 10000;

Select Waveform and Signal Parameters

Calculate the waveform pulse bandwidth using the pulse range resolution. Calculate the
pulse repetition frequency from the maximum range. Because the signal is baseband, set
the sampling frequency to twice the bandwidth. Calculate the pulse duration from the
pulse bandwidth.

pulse_bw = c/(2*range_res);
prf = c/(2*max_range);
fs = 2*pulse_bw;
pulse_duration = 10/pulse_bw;
waveform = phased.LinearFMWaveform('PulseWidth',pulse_duration,...
    'SampleRate',fs,'SweepBandwidth',...
    pulse_bw,'PRF',prf);

Achieving a particular Pd and Pfa requires that sufficient signal power arrive at the
receiver after the target reflects the signal. Compute the minimum SNR needed to
achieve the specified probability of false alarm and probability of detection by using the
Albersheim equation.

snr_min = albersheim(pd,pfa);

To to achieve this SNR, sufficient power must be transmitted to the target. Use the
radareqpow function to estimate the peak transmit power required to achieve the
specified SNR in dB for the target at a range of 3000 meters. The received signal also
depends on the target radar cross-section (RCS). which is assumed to follow a
nonfluctuating model (Swerling 0). Set the radar to have identical transmit and receive
gains of 20 dB.

txrx_gain = 20;
peak_power = radareqpow(lambda,target_range,...
    snr_min,pulse_duration,'RCS',tgt_rcs,...
    'Gain',txrx_gain,'Ts',290.0);
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Set Up the Transmitter System Objects

Create System Objects that make up the transmission part of the simulation: radar
platform, antenna, transmitter, and radiator.

antennaplatform = phased.Platform(...
    'InitialPosition',[0; 0; 0],...
    'Velocity',[0; 0; 0]);
antenna = phased.IsotropicAntennaElement(...
    'FrequencyRange',[5e9 15e9]);
transmitter = phased.Transmitter(...
    'Gain',txrx_gain,...
    'PeakPower',peak_power,...
    'InUseOutputPort',true);
radiator = phased.Radiator(...
    'Sensor',antenna,...
    'OperatingFrequency',fc);

Set Up the Target System Object

Create a target System Object corresponding to an actual reflecting target with a non-
zero target cross-section. Reflections from this target will simulate actual radar returns.
In order to compute false alarms, create a second target System Object with zero radar
cross section. Reflections from this target are zero except for noise.

target{1} = phased.RadarTarget(...
    'MeanRCS',tgt_rcs,...
    'OperatingFrequency',fc);
targetplatform{1} = phased.Platform(...
    'InitialPosition',[target_range; 0; 0]);
target{2} = phased.RadarTarget(...
    'MeanRCS',0,...
    'OperatingFrequency',fc);
targetplatform{2} = phased.Platform(...
    'InitialPosition',[target_range; 0; 0]);

Set Up Free-Space Propagation System Objects

Model the propagation environment from the radar to the targets and back.

channel{1} = phased.FreeSpace(...
    'SampleRate',fs,...
    'TwoWayPropagation',true,...
    'OperatingFrequency',fc);
channel{2} = phased.FreeSpace(...
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    'SampleRate',fs,...
    'TwoWayPropagation',true,...
    'OperatingFrequency',fc);

Set Up Receiver System Objects

Specified the noise by setting the NoiseMethod property to 'Noise temperature' and
the ReferenceTemperature property to 290 K.

collector = phased.Collector(...
    'Sensor',antenna,...
    'OperatingFrequency',fc);
receiver = phased.ReceiverPreamp(...
    'Gain',txrx_gain,...
    'NoiseMethod','Noise temperature',...
    'ReferenceTemperature',290.0,...
    'NoiseFigure',0,...
    'SampleRate',fs,...
    'EnableInputPort',true);
receiver.SeedSource = 'Property';
receiver.Seed = 2010;

Specify Fast-Time Grid

The fast-time grid is the set of time samples within one pulse repetition time interval.
Each sample corresponds to a range bin.

fast_time_grid = unigrid(0,1/fs,1/prf,'[)');
rangebins = c*fast_time_grid/2;

Create Transmitted Pulse from Waveform

Create the waveform to you want to transmit.

wavfrm = waveform();

Create the transmitted signal that includes transmitted antenna gains.

[sigtrans,tx_status] = transmitter(wavfrm);

Create matched filter coefficients from the waveform System object. Then create the
matched filter System object™.

MFCoeff = getMatchedFilter(waveform);
matchingdelay = size(MFCoeff,1) - 1;
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filter = phased.MatchedFilter(...
    'Coefficients',MFCoeff,...
    'GainOutputPort',false);

Compute Target Range Bin

Compute the target range, and then compute the index into the range bin array. Because
the target and radar are stationary, use the same values of position and velocity
throughout the simulation loop. You can assume that the range bin index is constant for
the entire simulation.

ant_pos = antennaplatform.InitialPosition;
ant_vel = antennaplatform.Velocity;
tgt_pos = targetplatform{1}.InitialPosition;
tgt_vel = targetplatform{1}.Velocity;
[tgt_rng,tgt_ang] = rangeangle(tgt_pos,ant_pos);
rangeidx = val2ind(tgt_rng,rangebins(2)-rangebins(1),rangebins(1));

Loop Over Pulses

Create a signal processing loop. Each step is accomplished by executing the System
objects. The loop processes the pulses twice, once for the target-present condition and
once for target-absent condition.

1 Radiate the signal into space using phased.Radiator.
2 Propagate the signal to the target and back to the antenna using

phased.FreeSpace.
3 Reflect the signal from the target using phased.Target.
4 Receive the reflected signals at the antenna using phased.Collector.
5 Pass the received signal though the receive amplifier using

phased.ReceiverPreamp. This step also adds the random noise to the signal.
6 Match filter the amplified signal using phased.MatchedFilter.
7 Store the matched filter output at the target range bin index for further analysis.

rcv_pulses = zeros(length(sigtrans),Npulsebuffsize);
h1 = zeros(Npulse,1);
h0 = zeros(Npulse,1);
Nbuff = floor(Npulse/Npulsebuffsize);
Nrem = Npulse - Nbuff*Npulsebuffsize;
for n = 1:2 % H1 and H0 Hypothesis
    trsig = radiator(sigtrans,tgt_ang);
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    trsig = channel{n}(trsig,...
        ant_pos,tgt_pos,...
        ant_vel,tgt_vel);
    rcvsig = target{n}(trsig);
    rcvsig = collector(rcvsig,tgt_ang);
    
    for k = 1:Nbuff
        for m = 1:Npulsebuffsize
            rcv_pulses(:,m) = receiver(rcvsig,~(tx_status>0));
        end
        rcv_pulses = filter(rcv_pulses);
        rcv_pulses = buffer(rcv_pulses(matchingdelay+1:end),size(rcv_pulses,1));
        if n == 1
            h1((1:Npulsebuffsize) + (k-1)*Npulsebuffsize) = rcv_pulses(rangeidx,:).';
        else
            h0((1:Npulsebuffsize) + (k-1)*Npulsebuffsize) = rcv_pulses(rangeidx,:).';
        end
    end
    if (Nrem > 0)
        for m = 1:Nrem
            rcv_pulses(:,m) = receiver(rcvsig,~(tx_status>0));
        end
        rcv_pulses = filter(rcv_pulses);
        rcv_pulses = buffer(rcv_pulses(matchingdelay+1:end),size(rcv_pulses,1));
         if n == 1
            h1((1:Nrem) + Nbuff*Npulsebuffsize) = rcv_pulses(rangeidx,1:Nrem).';
        else
            h0((1:Nrem) + Nbuff*Npulsebuffsize) = rcv_pulses(rangeidx,1:Nrem).';
         end
    end
end

Create Histogram of Matched Filter Outputs

Compute histograms of the target-present and target-absent returns. Use 100 bins to give
a rough estimate of the spread of signal values. Set the range of histogram values from
the smallest signal to the largest signal.

h1a = abs(h1);
h0a = abs(h0);
thresh_low = min([h1a;h0a]);
thresh_hi  = max([h1a;h0a]);
nbins = 100;
binedges = linspace(thresh_low,thresh_hi,nbins);
figure
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histogram(h0a,binedges)
hold on
histogram(h1a,binedges)
hold off
title('Target-Absent Vs Target-Present Histograms')
legend('Target Absent','Target Present')

Compare Simulated and Theoretical Pd and Pfa

To compute Pd and Pfa, calculate the number of instances that a target-absent return and
a target-present return exceed a given threshold. This set of thresholds has a finer
granularity than the bins used to create the histogram in the previous simulation. Then,
normalize these counts by the number of pulses to get an estimate of the probabilities.
The vector sim_pfa is the simulated probability of false alarm as a function of the
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threshold, thresh. The vector sim_pd is the simulated probability of detection, also a
function of the threshold. The receiver sets the threshold so that it can determine
whether a target is present or absent. The histogram above suggests that the best
threshold is around 1.8.

nbins = 1000;
thresh_steps = linspace(thresh_low,thresh_hi,nbins);
sim_pd = zeros(1,nbins);
sim_pfa = zeros(1,nbins);
for k = 1:nbins
    thresh = thresh_steps(k);
    sim_pd(k) = sum(h1a >= thresh);
    sim_pfa(k) = sum(h0a >= thresh);
end
sim_pd = sim_pd/Npulse;
sim_pfa = sim_pfa/Npulse;

To plot the experimental ROC curve, you must invert the Pfa curve so that you can plot Pd
against Pfa. You can invert the Pfa curve only when you can express Pfa as a strictly
monotonic decreasing function of thresh. To express Pfa this way, find all array indices
where the Pfa is the constant over neighboring indices. Then, remove these values from
the Pd and Pfa arrays.

pfa_diff = diff(sim_pfa);
idx = (pfa_diff == 0);
sim_pfa(idx) = [];
sim_pd(idx) = [];

Limit the smallest Pfa to 10−6.

minpfa = 1e-6;
N = sum(sim_pfa >= minpfa);
sim_pfa = fliplr(sim_pfa(1:N)).';
sim_pd = fliplr(sim_pd(1:N)).';

Compute the theoretical Pfa and Pd values from the smallest Pfa to 1. Then plot the
theoretical Pfa curve.

[theor_pd,theor_pfa] = rocsnr(snr_min,'SignalType',...
    'NonfluctuatingNoncoherent',...
    'MinPfa',minpfa,'NumPoints',N,'NumPulses',1);
semilogx(theor_pfa,theor_pd)
hold on
semilogx(sim_pfa,sim_pd,'r.')
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title('Simulated and Theoretical ROC Curves')
xlabel('Pfa')
ylabel('Pd')
grid on
legend('Theoretical','Simulated','Location','SE')

Improve Simulation Using One Million Pulses

In the preceding simulation, Pd values at low Pfa do not fall along a smooth curve and do
not even extend down to the specified operating regime. The reason for this is that at very
low Pfa levels, very few, if any, samples exceed the threshold. To generate curves at low
Pfa, you must use a number of samples on the order of the inverse of Pfa. This type of
simulation takes a long time. The following curve uses one million pulses instead of
45,000. To run this simulation, repeat the example, but set Npulse to 1000000.
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Matched Filtering
In this section...
“Reasons for Using Matched Filtering” on page 8-23
“Support for Matched Filtering” on page 8-23
“Matched Filtering of Linear FM Waveform” on page 8-23
“Matched Filtering to Improve SNR for Target Detection” on page 8-26

Reasons for Using Matched Filtering
You can see from the results in “Receiver Operating Characteristics” on page 8-7 that the
probability of detection increases with increasing SNR. For a deterministic signal in white
Gaussian noise, you can maximize the SNR at the receiver by using a filter matched to the
signal. The matched filter is a time-reversed and conjugated version of the signal. The
matched filter is shifted to be causal.

Support for Matched Filtering
Use phased.MatchedFilter to implement a matched filter.

When you use phased.MatchedFilter, you can customize characteristics of the
matched filter such as the matched filter coefficients and window for spectrum weighting.
If you apply spectrum weighting, you can specify the coverage region and coefficient
sample rate; Taylor, Chebyshev, and Kaiser windows have additional properties you can
specify.

Matched Filtering of Linear FM Waveform
This example compares the results of matched filtering with and without spectrum
weighting. Spectrum weighting is often used with linear FM waveforms to reduce the
sidelobes in the time domain.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Create a linear FM waveform with a duration of 0.1 milliseconds, a sweep bandwidth of
100 kHz, and a pulse repetition frequency of 5 kHz. Add noise to the linear FM pulse and
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filter the noisy signal using a matched filter. This example applies a matched filter with
and without spectrum weighting.

Specify the waveform.

waveform = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3,...
    'SampleRate',1e6,'OutputFormat','Pulses','NumPulses',1,...
    'SweepBandwidth',1e5);
wav = getMatchedFilter(waveform);

Create a matched filter with no spectrum weighting, and a matched filter that uses a
Taylor window for spectrum weighting.

filter = phased.MatchedFilter('Coefficients',wav);
taylorfilter = phased.MatchedFilter('Coefficients',wav,...
    'SpectrumWindow','Taylor');

Create the signal and add noise.

sig = waveform();
rng(17)
x = sig + 0.5*(randn(length(sig),1) + 1j*randn(length(sig),1));

Filter the noisy signal separately with each of the filters.

y = filter(x);
y_taylor = taylorfilter(x);

Plot the real parts of the waveform and noisy signal.

t = linspace(0,numel(sig)/waveform.SampleRate,...
    waveform.SampleRate/waveform.PRF);
subplot(2,1,1)
plot(t,real(sig))
title('Input Signal')
xlim([0 max(t)])
grid on
ylabel('Amplitude')
subplot(2,1,2)
plot(t,real(x))
title('Input Signal + Noise')
xlim([0 max(t)])
grid on
xlabel('Time (sec)')
ylabel('Amplitude')
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Plot the magnitudes of the two matched filter outputs.

plot(t,abs(y),'b--')
title('Matched Filter Output')
xlim([0 max(t)])
grid on
hold on
plot(t,abs(y_taylor),'r-')
ylabel('Magnitude')
xlabel('Seconds')
legend('No Spectrum Weighting','Taylor Window')
hold off

 Matched Filtering

8-25



Matched Filtering to Improve SNR for Target Detection
This example shows how to improve the SNR by performing matched filtering.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Place an isotropic antenna element at the global origin (0;0;0). Then, place a target with a
nonfluctuating RCS of 1 square meter approximately 7 km from the transmitter at
(5000;5000;10). Set the operating (carrier) frequency to 10 GHz. To simulate a
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monostatic radar, set the InUseOutputPort property on the transmitter to true.
Calculate the range and angle from the transmitter to the target.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[5e9 15e9]);
transmitter = phased.Transmitter('Gain',20,'InUseOutputPort',true);
fc = 10e9;
target = phased.RadarTarget('Model','Nonfluctuating',...
   'MeanRCS',1,'OperatingFrequency',fc);
txloc = [0;0;0];
tgtloc = [5000;5000;10];
transmitterplatform = phased.Platform('InitialPosition',txloc);
targetplatform = phased.Platform('InitialPosition',tgtloc);
[tgtrng,tgtang] = rangeangle(targetplatform.InitialPosition,...
   transmitterplatform.InitialPosition);

Create a rectangular pulse waveform 25 μs in duration with a PRF of 10 kHz. Use a single
pulse for this example. Determine the maximum unambiguous range for the given PRF.
Use the radareqpow function to determine the peak power required to detect a target.
This target has an RCS of 1 square meter at the maximum unambiguous range for the
transmitter operating frequency and gain. The SNR is based on a desired false-alarm rate
of 1e-6 for a noncoherent detector.

waveform = phased.RectangularWaveform('PulseWidth',25e-6,...
   'OutputFormat','Pulses','PRF',10e3,'NumPulses',1);
c = physconst('LightSpeed');
maxrange = c/(2*waveform.PRF);
SNR = npwgnthresh(1e-6,1,'noncoherent');
Pt = radareqpow(c/fc,maxrange,SNR,...
   waveform.PulseWidth,'RCS',target.MeanRCS,'Gain',transmitter.Gain);

Set the peak transmit power to the output value from radareqpow.

transmitter.PeakPower = Pt;

Create radiator and collector objects that operate at 10 GHz. Create a free space path for
the propagation of the pulse to and from the target. Then, create a receiver and a
matched filter for the rectangular waveform.

radiator = phased.Radiator('PropagationSpeed',c,...
   'OperatingFrequency',fc,'Sensor',antenna);
channel = phased.FreeSpace('PropagationSpeed',c,...
   'OperatingFrequency',fc,'TwoWayPropagation',false);
collector = phased.Collector('PropagationSpeed',c,...
   'OperatingFrequency',fc,'Sensor',antenna);
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receiver = phased.ReceiverPreamp('NoiseFigure',0,...
   'EnableInputPort',true,'SeedSource','Property','Seed',2e3);
filter = phased.MatchedFilter(...
   'Coefficients',getMatchedFilter(waveform),...
   'GainOutputPort',true);

After you create all the objects that define your model, you can propagate the pulse to
and from the target. Collect the echo at the receiver, and implement the matched filter to
improve the SNR.

Generate waveform.

wf = waveform();

Transmit waveform.

[wf,txstatus] = transmitter(wf);

Radiate pulse toward the target.

wf = radiator(wf,tgtang);

Propagate pulse toward the target.

wf = channel(wf,txloc,tgtloc,[0;0;0],[0;0;0]);

Reflect it off the target.

wf = target(wf);

Propagate the pulse back to transmitter.

wf = channel(wf,tgtloc,txloc,[0;0;0],[0;0;0]);

Collect the echo.

wf = collector(wf,tgtang);

Receive target echo.

rx_puls = receiver(wf,~txstatus);
[mf_puls,mfgain] = filter(rx_puls);

Get group delay of matched filter.

Gd = length(filter.Coefficients)-1;
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The group delay is constant.

Shift the matched filter output.

mf_puls=[mf_puls(Gd+1:end); mf_puls(1:Gd)];
subplot(2,1,1)
t = unigrid(0,1e-6,1e-4,'[)');
rangegates = c.*t;
rangegates = rangegates/2;
plot(rangegates,abs(rx_puls))
title('Received Pulse')
ylabel('Amplitude')
hold on
plot([tgtrng, tgtrng], [0 max(abs(rx_puls))],'r')
subplot(2,1,2)
plot(rangegates,abs(mf_puls))
title('With Matched Filtering')
xlabel('Meters')
ylabel('Amplitude')
hold on
plot([tgtrng, tgtrng], [0 max(abs(mf_puls))],'r')
hold off
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Stretch Processing
In this section...
“Reasons for Using Stretch Processing” on page 8-31
“Support for Stretch Processing” on page 8-31
“Stretch Processing Procedure” on page 8-31

Reasons for Using Stretch Processing
The linear FM waveform is popular in radar systems because its large time-bandwidth
product can provide good range resolution. However, the large bandwidth of this
waveform makes digital matched filtering difficult because it requires expensive, high-
quality analog-to-digital converters. Stretch processing, also known as deramping, or
dechirping, is an alternative to matched filtering. Stretch processing provides pulse
compression by looking for the return within a predefined range interval of interest.
Stretch processing typically occurs in the analog domain. Unlike matched filtering,
stretch processing reduces the bandwidth requirement of subsequent processing.

Support for Stretch Processing
The phased.StretchProcessor System object implements stretch processing. You can
use this object as part of a simulation that uses phased.LinearFMWaveform or directly
with your own data.

Stretch Processing Procedure
The typical procedure for stretch processing is as follows:

1 Choose a range interval of interest, centered on a reference range. Stretch
processing focuses on this interval instead of the entire range span that the pulse can
cover.

2 Define and configure a stretch processor object. The configuration includes the
reference range, length of the range interval of interest, characteristics of the linear
FM waveform, and signal propagation speed.

• If you are using a phased.LinearFMWaveform object to implement the linear
FM waveform, use the getStretchProcessor method to define and
automatically configure a stretch processor object.
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• Otherwise, create a phased.StretchProcessor object directly, and set its
properties as needed.

3 Perform stretch processing by calling the step method on your stretch processor
object. You provide your received signal as an input argument. The step method
generates a reference signal and correlates it with your received signal.

4 Compute a periodogram of the output from step, and identify the peak frequencies.
You can use the following features to help you perform this step:

• periodogram
• psd
• findpeaks

5 Convert each peak frequency to the corresponding range value, using the
stretchfreq2rng function.

See Also
findpeaks | periodogram | phased.LinearFMWaveform |
phased.StretchProcessor | stretchfreq2rng

Related Examples
• Range Estimation Using Stretch Processing
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FMCW Range Estimation
The purpose of FMCW range estimation is to estimate the range of a target. For example,
a radar for collision avoidance in an automobile needs to estimate the distance to the
nearest obstacle. FMCW range estimation algorithms can vary in the details, but the
typical high-level procedure is as follows:

1 Dechirp — Dechirp the received signal by mixing it with the transmitted signal. If
you use the dechirp function, the transmitted signal is the reference signal.

2 Find beat frequency — From the dechirped signal, extract the beat frequency or
pair of beat frequencies. If the FMCW signal has a sawtooth shape (up-sweep or
down-sweep sawtooth shape), you extract one beat frequency. If the FMCW signal
has a triangular sweep, you extract up-sweep and down-sweep beat frequencies.

Extracting beat frequencies can use a variety of algorithms. For example, you can use
the following features to help you perform this step:

• pwelch or periodogram
• psd
• findpeaks
• rootmusic
• phased.CFARDetector

3 Compute range — Use the beat frequency or frequencies to compute the
corresponding range value. The beat2range function can perform this computation.

While developing your algorithm, you might also perform these auxiliary tasks:

• Visualize targets in the range-Doppler domain, using the
phased.RangeDopplerResponse System object.

• Determine whether you need to compensate for range-Doppler coupling. Such
coupling can occur if the target is moving relative to the radar. You can use the
rdcoupling function to compute the range offset due to range-Doppler coupling. If
the range offset is not negligible, common compensation techniques include:

• Subtracting the range offset from your initial range estimate
• Having the FMCW signal use a triangle sweep instead of an up sweep or down

sweep
• Explore the relationships among your system’s range requirements and parameters of

the FMCW waveform. You can use these functions:
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• range2time
• time2range
• range2bw

See Also
beat2range | dechirp | findpeaks | periodogram | phased.FMCWWaveform |
phased.RangeDopplerResponse | pwelch | range2beat | range2bw | range2time |
rdcoupling | rootmusic | time2range

Related Examples
• Automotive Adaptive Cruise Control Using FMCW Technology
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Range-Doppler Response
In this section...
“Benefits of Producing Range-Doppler Response” on page 8-35
“Support for Range-Doppler Processing” on page 8-35
“Range-Speed Response Pattern of Target” on page 8-37

Benefits of Producing Range-Doppler Response
Visualizing a signal in the range-Doppler domain can help you intuitively understand
connections among targets. From a range-Doppler map, you can:

• See how far away the targets are and how quickly they are approaching or receding.
• Distinguish among targets moving at various speeds at various ranges, in particular:

• If a transmitter platform is stationary, a range-Doppler map shows a response from
stationary targets at zero Doppler.

• For targets that are moving relative to the transmitter platform, the range-Doppler
map shows a response at nonzero Doppler values.

You can also use the range-Doppler response in nonvisual ways. For example, you can
perform peak detection in the range-Doppler domain and use the information to resolve
the range-Doppler coupling of an FMCW radar system.

Support for Range-Doppler Processing
You can use the phased.RangeDopplerResponse object to compute and visualize the
range-Doppler response of input data. This object performs range processing in fast time,
followed by Doppler processing in slow time. The object configuration and syntax typically
depend on the kind of radar system.

Pulsed Radar Systems

This procedure is used typically to produce a range-Doppler response for a pulsed radar
system. (In the special case of linear FM pulses, the procedure in “FMCW Radar Systems”
on page 8-36 is an alternative option.)

1 Create a phased.RangeDopplerResponse object, setting the RangeMethod
property to 'Matched Filter'.
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2 Customize these characteristics, or accept default values for any of them:

• Signal propagation speed
• Sample rate
• Length of the FFT for Doppler processing
• Characteristics of the window for Doppler weighting, if any
• Doppler domain output preference in terms of radial speed or Doppler shift

frequency. (If you select radial speed, also specify the signal carrier frequency.)
3 Organize your data, x, into a matrix. The columns in this matrix correspond to

separate, consecutive pulses.
4 Use plotResponse to plot the range-Doppler response or step to obtain data

representing the range-Doppler response. Include x and matched filter coefficients in
your syntax when you call plotResponse or step.

For examples, see the step reference page or “Range-Speed Response Pattern of Target”
on page 8-37.

FMCW Radar Systems

This procedure is used typically to produce a range-Doppler response for an FMCW radar
system. You can also use this procedure for a system that uses linear FM pulsed signals.
In the case of pulsed signals, you typically use stretch processing to dechirp the signal.

1 Create a phased.RangeDopplerResponse object, setting the RangeMethod
property to 'Dechirp'.

2 Customize these characteristics, or accept default values for any of them:

• Signal propagation speed
• Sample rate
• FM sweep slope
• Whether the processor should dechirp or decimate your signal
• Length of the FFT for range processing. The algorithm performs an FFT to

translate the dechirped data into the beat frequency domain, which provides
range information.

• Characteristics of the window for range weighting, if any
• Length of the FFT for Doppler processing
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• Characteristics of the window for Doppler weighting, if any
• Doppler domain output preference in terms of radial speed or Doppler shift

frequency. (If you select radial speed, also specify the signal carrier frequency.)
3 Organize your data, x, into a matrix in which the columns correspond to sweeps or

pulses that are separate and consecutive.

In the case of an FMCW waveform with a triangle sweep, the sweeps alternate
between positive and negative slopes. However, phased.RangeDopplerResponse
is designed to process consecutive sweeps of the same slope. To apply
phased.RangeDopplerResponse for a triangle-sweep system, use one of the
following approaches:

• Specify a positive SweepSlope property value, with x corresponding to upsweeps
only. The true values of Doppler or speed are half of what step returns or
plotResponse plots.

• Specify a negative SweepSlope property value, with x corresponding to
downsweeps only. The true values of Doppler or speed are half of what step
returns or plotResponse plots.

4 Use plotResponse to plot the range-Doppler response or step to obtain data
representing the range-Doppler response. Include x in the syntax when you call
plotResponse or step. If your data is not already dechirped, also include a
reference signal in the syntax.

For an example, see the plotResponse reference page.

Range-Speed Response Pattern of Target
This example shows how to visualize the speed and range of a target in a pulsed radar
system that uses a rectangular waveform.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Place an isotropic antenna element at the global origin (0,0,0). Then, place a target with a
nonfluctuating RCS of 1 square meter at (5000,5000,10), which is approximately 7 km
from the transmitter. Set the operating (carrier) frequency to 10 GHz. To simulate a
monostatic radar, set the InUseOutputPort property on the transmitter to true.
Calculate the range and angle from the transmitter to the target.
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antenna = phased.IsotropicAntennaElement(...
    'FrequencyRange',[5e9 15e9]);
transmitter = phased.Transmitter('Gain',20,'InUseOutputPort',true);
fc = 10e9;
target = phased.RadarTarget('Model','Nonfluctuating',...
    'MeanRCS',1,'OperatingFrequency',fc);
txloc = [0;0;0];
tgtloc = [5000;5000;10];
antennaplatform = phased.Platform('InitialPosition',txloc);
targetplatform = phased.Platform('InitialPosition',tgtloc);
[tgtrng,tgtang] = rangeangle(targetplatform.InitialPosition,...
    antennaplatform.InitialPosition);

Create a rectangular pulse waveform 2μs in duration with a PRF of 10 kHz. Determine
the maximum unambiguous range for the given PRF. Use the radareqpow function to
determine the peak power required to detect a target. This target has an RCS of 1 square
meter at the maximum unambiguous range for the transmitter operating frequency and
gain. The SNR is based on a desired false-alarm rate of  for a noncoherent detector.

waveform = phased.RectangularWaveform('PulseWidth',2e-6,...
    'OutputFormat','Pulses','PRF',1e4,'NumPulses',1);
c = physconst('LightSpeed');
maxrange = c/(2*waveform.PRF);
SNR = npwgnthresh(1e-6,1,'noncoherent');
Pt = radareqpow(c/fc,maxrange,SNR,...
    waveform.PulseWidth,'RCS',target.MeanRCS,'Gain',transmitter.Gain);

Set the peak transmit power to the output value from radareqpow.

transmitter.PeakPower = Pt;

Create radiator and collector objects that operate at 10 GHz. Create a free space path for
the propagation of the pulse to and from the target. Then, create a receiver.

radiator = phased.Radiator(...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc,'Sensor',antenna);
channel = phased.FreeSpace(...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc,'TwoWayPropagation',false);
collector = phased.Collector(...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc,'Sensor',antenna);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...
    'EnableInputPort',true,'SeedSource','Property','Seed',2e3);
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Propagate 25 pulses to and from the target. Collect the echoes at the receiver, and store
them in a 25-column matrix named rx_puls.

numPulses = 25;
rx_puls = zeros(100,numPulses);

Simulation loop

for n = 1:numPulses

Generate waveform

    wf = waveform();

Transmit waveform

    [wf,txstatus] = transmitter(wf);

Radiate pulse toward the target

    wf = radiator(wf,tgtang);

Propagate pulse toward the target

    wf = channel(wf,txloc,tgtloc,[0;0;0],[0;0;0]);

Reflect it off the target

    wf = target(wf);

Propagate the pulse back to transmitter

    wf = channel(wf,tgtloc,txloc,[0;0;0],[0;0;0]);

Collect the echo

    wf = collector(wf,tgtang);

Receive the target echo

    rx_puls(:,n) = receiver(wf,~txstatus);

end
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Create a range-Doppler response object that uses the matched filter approach. Configure
this object to show radial speed rather than Doppler frequency. Use plotResponse to
plot the range versus speed.

rangedoppler = phased.RangeDopplerResponse(...
    'RangeMethod','Matched Filter',...
    'PropagationSpeed',c,...
    'DopplerOutput','Speed','OperatingFrequency',fc);
plotResponse(rangedoppler,rx_puls,getMatchedFilter(waveform))
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The plot shows the stationary target at a range of approximately 7000 m.

See Also
phased.RangeDopplerResponse

Related Examples
• Automotive Adaptive Cruise Control Using FMCW Technology
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Constant False-Alarm Rate (CFAR) Detectors
In this section...
“False Alarm Rate For CFAR Detectors” on page 8-42
“Cell-Averaging CFAR Detector” on page 8-44
“CFAR Detector Adaptation to Noisy Input Data” on page 8-46
“Extensions of Cell-Averaging CFAR Detector” on page 8-47
“Detection Probability for CFAR Detector” on page 8-47

False Alarm Rate For CFAR Detectors
In the Neyman-Pearson framework, the probability of detection is maximized subject to
the constraint that the false-alarm probability does not exceed a specified level. The false-
alarm probability depends on the noise variance. Therefore, to calculate the false-alarm
probability, you must first estimate the noise variance. If the noise variance changes, you
must adjust the threshold to maintain a constant false-alarm rate. Constant false-alarm
rate detectors implement adaptive procedures that enable you to update the threshold
level of your test when the power of the interference changes.

To motivate the need for an adaptive procedure, assume a simple binary hypothesis test
where you must decide between the signal-absent and signal-present hypotheses for a
single sample. The signal has amplitude 4, and the noise is zero-mean gaussian with unit
variance.

First, set the false-alarm rate to 0.001 and determine the threshold.

T = npwgnthresh(1e-3,1,'real');
threshold = sqrt(db2pow(T))

threshold =

    3.0902

8 Detection

8-42



Check that this threshold yields the desired false-alarm rate probability and then compute
the probability of detection.

pfa = 0.5*erfc(threshold/sqrt(2))
pd = 0.5*erfc((threshold-4)/sqrt(2))

pfa =

   1.0000e-03

pd =

    0.8185

Next, assume that the noise power increases by 6.02 dB, doubling the noise variance. If
your detector does not adapt to this increase in variance by determining a new threshold,
your false-alarm rate increases significantly.

pfa = 0.5*erfc(threshold/2)

pfa =

    0.0144

The following figure shows the effect of increasing the noise variance on the false-alarm
probability for a fixed threshold.

noisevar = 1:0.1:10;
noisepower = 10*log10(noisevar);
pfa = 0.5*erfc(threshold./sqrt(2*noisevar));
semilogy(noisepower,pfa./1e-3)
grid on
title('Increase in P_{FA} due to Noise Variance')
ylabel('Increase in P_{FA} (Orders of Magnitude)')
xlabel('Noise Power Increase (dB)')
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Cell-Averaging CFAR Detector
The cell-averaging CFAR detector estimates the noise variance for the range cell of
interest, or cell under test, by analyzing data from neighboring range cells designated as
training cells. The noise characteristics in the training cells are assumed to be identical to
the noise characteristics in the cell under test (CUT).

This assumption is key in justifying the use of the training cells to estimate the noise
variance in the CUT. Additionally, the cell-averaging CFAR detector assumes that the
training cells do not contain any signals from targets. Thus, the data in the training cells
are assumed to consist of noise only.

To make these assumptions realistic:
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• It is preferable to have some buffer, or guard cells, between the CUT and the training
cells. The buffer provided by the guard cells guards against signal leaking into the
training cells and adversely affecting the estimation of the noise variance.

• The training cells should not represent range cells too distant in range from the CUT,
as the following figure illustrates.

The optimum estimator for the noise variance depends on distributional assumptions and
the type of detector. Assume the following:

1 You are using a square-law detector.
2 You have a Gaussian, complex-valued, random variable (RV) with independent real

and imaginary parts.
3 The real and imaginary parts each have mean zero and variance equal to σ2/2.

Note If you denote this RV by Z=U+jV, the squared magnitude |Z|2 follows an
exponential distribution with mean σ2.

If the samples in training cells are the squared magnitudes of such complex Gaussian
RVs, you can use the sample mean as an estimator of the noise variance.

To implement cell-averaging CFAR detection, use phased.CFARDetector. You can
customize characteristics of the detector such as the numbers of training cells and guard
cells, and the probability of false alarm.
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CFAR Detector Adaptation to Noisy Input Data
This example shows how to create a CFAR detector and test its ability to adapt to the
statistics of input data. The test uses noise-only trials. By using the default square-law
detector, you can determine how close the empirical false-alarm rate is to the desired
false-alarm probability.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Create a CFAR detector object with two guard cells, 20 training cells, and a false-alarm
probability of 0.001. By default, this object assumes a square-law detector with no pulse
integration.

detector = phased.CFARDetector('NumGuardCells',2,...
    'NumTrainingCells',20,'ProbabilityFalseAlarm',1e-3);

There are 10 training cells and 1 guard cell on each side of the cell under test (CUT). Set
the CUT index to 12.

CUTidx = 12;

Seed the random number generator for a reproducible set of input data.

rng(1000);

Set the noise variance to 0.25. This value corresponds to an approximate -6 dB SNR.
Generate a 23-by-10000 matrix of complex-valued, white Gaussian rv's with the specified
variance. Each row of the matrix represents 10,000 Monte Carlo trials for a single cell.

Ntrials = 1e4;
variance = 0.25;
Ncells = 23;
inputdata = sqrt(variance/2)*(randn(Ncells,Ntrials)+1j*randn(Ncells,Ntrials));

Because the example implements a square-law detector, take the squared magnitudes of
the elements in the data matrix.

Z = abs(inputdata).^2;

Provide the output from the square-law operator and the index of the cell under test to
the CFAR detector.
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Z_detect = detector(Z,CUTidx);

The output, Z_detect, is a logical vector with 10,000 elements. Sum the elements in
Z_detect and divide by the total number of trials to obtain the empirical false-alarm
rate.

pfa = sum(Z_detect)/Ntrials

pfa = 0.0013

The empirical false-alarm rate is 0.0013, which corresponds closely to the desired false-
alarm rate of 0.001.

Extensions of Cell-Averaging CFAR Detector
The cell-averaging algorithm for a CFAR detector works well in many situations, but not
all. For example, when targets are closely located, cell averaging can cause a strong
target to mask a weak target nearby. The phased.CFARDetector System object
supports the following CFAR detection algorithms.

Algorithm Typical Usage
Cell-averaging CFAR Most situations
Greatest-of cell-averaging CFAR When it is important to avoid false alarms at the

edge of clutter
Smallest-of cell-averaging CFAR When targets are closely located
Order statistic CFAR Compromise between greatest-of and smallest-of

cell averaging

Detection Probability for CFAR Detector
This example shows how to compare the probability of detection resulting from two CFAR
algorithms. In this scenario, the order statistic algorithm detects a target that the cell-
averaging algorithm does not.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Create a CFAR detector that uses the cell-averaging CFAR algorithm.
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Ntraining = 10;
Nguard = 2;
Pfa_goal = 0.01;
detector = phased.CFARDetector('Method','CA',...
    'NumTrainingCells',Ntraining,'NumGuardCells',Nguard,...
    'ProbabilityFalseAlarm',Pfa_goal);

The detector has 2 guard cells, 10 training cells, and a false-alarm probability of 0.01.
This object assumes a square-law detector with no pulse integration.

Generate a vector of input data based on a complex-valued white Gaussian random
variable.

Ncells = 23;
Ntrials = 100000;
inputdata = 1/sqrt(2)*(randn(Ncells,Ntrials) + ...
    1i*randn(Ncells,Ntrials));

In the input data, replace rows 8 and 12 to simulate two targets for the CFAR detector to
detect.

inputdata(8,:) = 3*exp(1i*2*pi*rand);
inputdata(12,:) = 9*exp(1i*2*pi*rand);

Because the example implements a square-law detector, take the squared magnitudes of
the elements in the input data vector.

Z = abs(inputdata).^2;

Perform the detection on rows 8 through 12.

Z_detect = detector(Z,8:12);

The Z_detect matrix has five rows. The first and last rows correspond to the simulated
targets. The three middle rows correspond to noise.

Compute the probability of detection of the two targets. Also, estimate the probability of
false alarm using the noise-only rows.

Pd_1 = sum(Z_detect(1,:))/Ntrials

Pd_1 = 0

Pd_2 = sum(Z_detect(end,:))/Ntrials

Pd_2 = 1
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Pfa = max(sum(Z_detect(2:end-1,:),2)/Ntrials)

Pfa = 6.0000e-05

The 0 value of Pd_1 indicates that this detector does not detect the first target.

Change the CFAR detector so it uses the order statistic CFAR algorithm with a rank of 5.

release(detector);
detector.Method = 'OS';
detector.Rank = 5;

Repeat the detection and probability computations.

Z_detect = detector(Z,8:12);
Pd_1 = sum(Z_detect(1,:))/Ntrials

Pd_1 = 0.5820

Pd_2 = sum(Z_detect(end,:))/Ntrials

Pd_2 = 1

Pfa = max(sum(Z_detect(2:end-1,:),2)/Ntrials)

Pfa = 0.0066

Using the order statistic algorithm instead of the cell-averaging algorithm, the detector
detects the first target in about 58% of the trials.
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Measure Intensity Levels Using the Intensity Scope
This tutorial shows you how to measure the intensity of signals using the UI of the
intensity scope. First, create an intensity scope. You can start with the example below,
“RTI and DTI Displays in Full Radar Simulation” on page 8-51, or you can create your
own scope. When this example launches, range-time-intensity (RTI) and Doppler-time-
intensity (DTI) display windows open. This tutorial focuses on the RTI display so you can
close the DTI window once the processing loop completes. This figure shows the RTI
display after processing has completed. The display shows three tracks.

To examine the data, click the Cursor Measurement button  in the Toolbar. You see two
cursors, each of which is represented by pairs of cross-hairs. To distinguish cursors, one
pair consists of solid lines and the second pair consists of dashed lines and are tagged
with a 1 or a 2.
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Cursor 1 has solid cross-hairs and overlays the intersection of two signal lines. Cursor 2
has dashed cross-hairs and overlays a signal-free region. The Cursor Measurements
pane shows the coordinates of the cursors in time and range (labelled X) and the
intensities at these positions. Cursor 1 is located at a range of 2775 meters and a time of
3.6 seconds. The signal intensity at this point is 1.989e-6 watts. Cursor 2 is located at a
range of 3725 meters and a time of 2.9 seconds. The signal intensity at this point is
3.327e-7 watts. You can move the cursors to any positions of interest and obtain the
intensity values.

RTI and DTI Displays in Full Radar Simulation
Use the phased.IntensityScope System object? to display the detection output of a
complete radar system simulation. The radar scenario contains a stationary single-
element monostatic radar and three moving targets.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).
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Set Radar Operating Parameters

Set the probability of detection, probability of false alarm, maximum range, range
resolution, operating frequency, transmitter gain, and target radar cross-section.

pd = 0.9;
pfa = 1e-6;
max_range = 5000;
range_res = 50;
fc = 10e9;
tx_gain = 20;
tgt_rcs = 1;

Choose the signal propagation speed to be the speed of light, and compute the signal
wavelength corresponding to the operating frequency.

c = physconst('LightSpeed');
lambda = c/fc;

Compute the pulse bandwidth from the range resolution. Set the sampling rate, fs, to
twice the pulse bandwidth. The noise bandwidth is also set to the pulse bandwidth. The
radar integrates a number of pulses set by num_pulse_int. The duration of each pulse is
the inverse of the pulse bandwidth.

pulse_bw = c/(2*range_res);
pulse_length = 1/pulse_bw;
fs = 2*pulse_bw;
noise_bw = pulse_bw;
num_pulse_int = 10;

Set the pulse repetition frequency to match the maximum range of the radar.

prf = c/(2*max_range);

Compute Transmit Power

Use the Albersheim equation to compute the SNR required to meet the desired
probability of detection and probability of false alarm. Then, use the radar equation to
compute the power needed to achieve the required SNR.

snr_min = albersheim(pd, pfa, num_pulse_int);
peak_power = radareqpow(lambda,max_range,snr_min,pulse_length,...
    'RCS',tgt_rcs,'Gain',tx_gain);
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Create System Objects for the Model

Choose a rectangular waveform.

waveform = phased.RectangularWaveform('PulseWidth',pulse_length,...
    'PRF',prf,'SampleRate',fs);

Set the receiver amplifier characteristics.

amplifier = phased.ReceiverPreamp('Gain',20,'NoiseFigure',0,...
    'SampleRate',fs,'EnableInputPort',true,'SeedSource','Property',...
    'Seed',2007);
transmitter = phased.Transmitter('Gain',tx_gain,'PeakPower',peak_power,...
    'InUseOutputPort',true);

Specify the radar antenna as a single isotropic antenna.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[5e9 15e9]);

Set up a monostatic radar platform.

radarplatform = phased.Platform('InitialPosition',[0; 0; 0],...
    'Velocity',[0; 0; 0]);

Set up the three target platforms using a single System object.

targetplatforms = phased.Platform(...
    'InitialPosition',[2000.66 3532.63 3845.04; 0 0 0; 0 0 0], ...
    'Velocity',[150 -150 0; 0 0 0; 0 0 0]);

Create the radiator and collector System objects.

radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',fc);
collector = phased.Collector('Sensor',antenna,'OperatingFrequency',fc);

Set up the three target RCS properties.

targets = phased.RadarTarget('MeanRCS',[1.6 2.2 1.05],'OperatingFrequency',fc);

Create System object to model two-way freespace propagation.

channels= phased.FreeSpace('SampleRate',fs,'TwoWayPropagation',true,...
    'OperatingFrequency',fc);

Define a matched filter.
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MFcoef = getMatchedFilter(waveform);
filter = phased.MatchedFilter('Coefficients',MFcoef,'GainOutputPort',true);

Create Range and Doppler Bins

Set up the fast-time grid. Fast time is the sampling time of the echoed pulse relative to
the pulse transmission time. The range bins are the ranges corresponding to each bin of
the fast time grid.

fast_time = unigrid(0,1/fs,1/prf,'[)');
range_bins = c*fast_time/2;

To compensate for range loss, create a time varying gain System Object?.

gain = phased.TimeVaryingGain('RangeLoss',2*fspl(range_bins,lambda),...
    'ReferenceLoss',2*fspl(max_range,lambda));

Set up Doppler bins. Doppler bins are determined by the pulse repetition frequency.
Create an FFT System object for Doppler processing.

DopplerFFTbins = 32;
DopplerRes = prf/DopplerFFTbins;
fft = dsp.FFT('FFTLengthSource','Property',...
    'FFTLength',DopplerFFTbins);

Create Data Cube

Set up a reduced data cube. Normally, a data cube has fast-time and slow-time dimensions
and the number of sensors. Because the data cube has only one sensor, it is two-
dimensional.

rx_pulses = zeros(numel(fast_time),num_pulse_int);

Create IntensityScope System Objects

Create two IntensityScope System objects, one for Doppler-time-intensity and the
other for range-time-intensity.

dtiscope = phased.IntensityScope('Name','Doppler-Time Display',...
    'XLabel','Velocity (m/sec)', ...
    'XResolution',dop2speed(DopplerRes,c/fc)/2, ...
    'XOffset',dop2speed(-prf/2,c/fc)/2,...
    'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','Mag');
rtiscope = phased.IntensityScope('Name','Range-Time Display',...
    'XLabel','Range (m)', ...
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    'XResolution',c/(2*fs), ...
    'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','Mag');

Run the Simulation Loop Over Multiple Radar Transmissions

Transmit 2000 pulses. Coherently process groups of 10 pulses at a time.

For each pulse:

1 Update the radar position and velocity radarplatform
2 Update the target positions and velocities targetplatforms
3 Create the pulses of a single wave train to be transmitted transmitter
4 Compute the ranges and angles of the targets with respect to the radar
5 Radiate the signals to the targets radiator
6 Propagate the pulses to the target and back channels
7 Reflect the signals off the target targets
8 Receive the signal sCollector
9 Amplify the received signal amplifier
10 Form data cube

For each set of 10 pulses in the data cube:

1 Match filter each row (fast-time dimension) of the data cube.
2 Compute the Doppler shifts for each row (slow-time dimension) of the data cube.

pri = 1/prf;
nsteps = 200;
for k = 1:nsteps
    for m = 1:num_pulse_int
        [ant_pos,ant_vel] = radarplatform(pri);
        [tgt_pos,tgt_vel] = targetplatforms(pri);
        sig = waveform();
        [s,tx_status] = transmitter(sig);
        [~,tgt_ang] = rangeangle(tgt_pos,ant_pos);
        tsig = radiator(s,tgt_ang);
        tsig = channels(tsig,ant_pos,tgt_pos,ant_vel,tgt_vel);
        rsig = targets(tsig);
        rsig = collector(rsig,tgt_ang);
        rx_pulses(:,m) = amplifier(rsig,~(tx_status>0));
    end
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    rx_pulses = filter(rx_pulses);
    MFdelay = size(MFcoef,1) - 1;
    rx_pulses = buffer(rx_pulses((MFdelay + 1):end), size(rx_pulses,1));
    rx_pulses = gain(rx_pulses);
    range = pulsint(rx_pulses,'noncoherent');
    rtiscope(range);
    dshift = fft(rx_pulses.');
    dshift = fftshift(abs(dshift),1);
    dtiscope(mean(dshift,2));
    radarplatform(.05);
    targetplatforms(.05);
end
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All of the targets lie on the x-axis. Two targets are moving along the x-axis and one is
stationary. Because the radar is at the origin, you can read the target speed directly from
the Doppler-Time Display window. The values agree with the specified velocities of -150,
150, and 0 m/sec.
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Environment and Target Models

• “Free Space Path Loss” on page 9-2
• “Two-Ray Multipath Propagation” on page 9-11
• “Free-Space Propagation of Wideband Signals” on page 9-14
• “Radar Target” on page 9-16
• “Swerling 1 Target Models” on page 9-20
• “Swerling Target Models” on page 9-25
• “Swerling 3 Target Models” on page 9-31
• “Swerling 4 Target Models” on page 9-36
• “Clutter Modeling” on page 9-42
• “Barrage Jammer” on page 9-45
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Free Space Path Loss
In this section...
“Support for Modeling Propagation in Free Space” on page 9-2
“Free Space Path Loss in dB” on page 9-2
“Propagate Linear FM Pulse Waveform to Target and Back” on page 9-3
“One-Way and Two-Way Propagation” on page 9-5
“Propagate Signal from Stationary Radar to Moving Target” on page 9-6

Support for Modeling Propagation in Free Space
Propagation environments have significant effects on the amplitude, phase, and shape of
propagating space-time wavefields. In some cases, you may want to simulate a system
that propagates narrowband signals through free space. If so, you can use the
phased.FreeSpace System object to model the range-dependent time delay, phase shift,
Doppler shift, and gain effects.

Consider this object as a point-to-point propagation channel. By setting object properties,
you can customize certain characteristics of the environment and the signals propagating
through it, including:

• Propagation speed and sampling rate of the signal you are propagating
• Signal carrier frequency
• Whether the object models one-way or two-way propagation

Each time you call step on a phased.FreeSpace object, you specify not only the signal
to propagate, but also the location and velocity of the signal origin and destination.

You can use fspl to determine the free space path loss, in decibels, for a given distance
and wavelength.

Free Space Path Loss in dB
Assume a transmitter is located at (1000,250,10) in the global coordinate system. Assume
a target is located at (3000,750,20). The transmitter operates at 1 GHz. Determine the
free space path loss in decibels for a narrowband signal propagating to and from the
target.
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[tgtrng,~] = rangeangle([3000; 750; 20],[1000; 250; 10]);

Multiply the range by two for two-way propagation.

tgtrng = 2*tgtrng;

Determine the wavelength for 1 GHz.

lambda = physconst('LightSpeed')/1e9;

Solve for the loss using fspl.

L = fspl(tgtrng,lambda)

L = 104.7524

The free space path loss in decibels is approximately 105 dB.

Alternatively, you can compute the loss directly from

Loss = pow2db((4*pi*tgtrng/lambda)^2)

Loss = 104.7524

Propagate Linear FM Pulse Waveform to Target and Back
Construct a linear FM pulse waveform of 50 ms duration with a bandwidth of 100 kHz.
Model the range-dependent time delay and amplitude loss incurred during two-way
propagation. The pulse propagates between the transmitter located at (1000,250,10) and
a target located at (3000,750,20). The signals propagate at the speed of light.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

waveform = phased.LinearFMWaveform('SweepBandwidth',1e5,...
    'PulseWidth',5e-5,'OutputFormat','Pulses',...
    'NumPulses',1,'SampleRate',1e6,'PRF',1e4);
signal = waveform();
channel = phased.FreeSpace('SampleRate',1e6,...
    'TwoWayPropagation',true,'OperatingFrequency',1e9);
y = channel(signal,[1000; 250; 10],[3000; 750; 20],[0;0;0],[0;0;0]);
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Plot the magnitude of the transmitted and received pulse to show the amplitude loss and
time delay.

t = unigrid(0,1/waveform.SampleRate,1/waveform.PRF,'[)');
subplot(2,1,1)
plot(t.*1e6,abs(signal))
title('Magnitude of Transmitted Pulse')
xlabel('Time (microseconds)')
ylabel('Magnitude')
subplot(2,1,2)
plot(t.*1e6,abs(y))
title('Magnitude of Received Pulse')
xlabel('Time (microseconds)')
ylabel('Magnitude')
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The delay in the received pulse is approximately 14 μs, the expected value for a distance
of 4.123 km.

One-Way and Two-Way Propagation
The TwoWayPropagation property of the phased.FreeSpace System object™ lets you
simulate either one- or two-way propagation. The following example demonstrates how to
use this property for a single linear FM pulse propagating to a target and back. The
sensor is a single isotropic radiating antenna operating at 1 GHz located at
(1000,250,10). The target is located at (3000,750,20) and has a nonfluctuating RCS of 1
square meter.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

The following code constructs the required System objects and calculates the range and
angle from the antenna to the target.

waveform = phased.LinearFMWaveform('SweepBandwidth',1e5,...
    'PulseWidth',5e-5,'OutputFormat','Pulses',...
    'NumPulses',1,'SampleRate',1e6);
antenna = phased.IsotropicAntennaElement('FrequencyRange',[500e6 1.5e9]);
transmitter = phased.Transmitter('PeakPower',1e3,'Gain',20);
radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',1e9);
channel = phased.FreeSpace('SampleRate',1e6,...
    'TwoWayPropagation',true,'OperatingFrequency',1e9);
target = phased.RadarTarget('MeanRCS',1,'Model','Nonfluctuating');
collector = phased.Collector('Sensor',antenna,'OperatingFrequency',1e9);
sensorpos = [3000;750;20];
tgtpos = [1000;250;10];
[tgtrng,tgtang] = rangeangle(sensorpos,tgtpos);

Because the TwoWayPropagation property is set to true, you compute the total
propagation only once.

Compute the radiated signal.

pulse = waveform();
pulse = transmitter(pulse);
pulse = radiator(pulse,tgtang);

 Free Space Path Loss

9-5



Propagate the pulse to the target and back.

pulse = channel(pulse,sensorpos,tgtpos,[0;0;0],[0;0;0]);
pulse = target(pulse);
sig = collector(pulse,tgtang);

Alternatively, you can break up the two-way propagation into two separate one-way
propagation paths. You do so by setting the TwoWayPropagation property to false.

channel1 = phased.FreeSpace('SampleRate',1e9,...
    'TwoWayPropagation',false,'OperatingFrequency',1e6);

Radiate the pulse.

pulse = waveform();
pulse = transmitter(pulse);
pulse = radiator(pulse,tgtang);

Propagate the pulse from the antenna to the target.

pulse = channel1(pulse,sensorpos,tgtpos,[0;0;0],[0;0;0]);
pulse = target(pulse);

Propagate the reflected pulse from the target to the antenna.

pulse = channel(pulse,tgtpos,sensorpos,[0;0;0],[0;0;0]);
sig = collector(pulse,tgtang);

Propagate Signal from Stationary Radar to Moving Target
This example shows how to propagate a signal in free space from a stationary radar to a
moving target.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Define the signal sample rate, propagation speed, and carrier frequency. Define the signal
as a sinusoid of frequency 150 Hz. Set the sample rate to 1 kHz and the carrier frequency
to 300 MHz. The propagation speed is the speed of light.

fs = 1.0e3;
c = physconst('Lightspeed');
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fc = 300e3;
f = 150.0;
N = 1024;
t = (0:N-1)'/fs;
x = exp(1i*2*pi*f*t);

Assume the target is approaching the radar at 300.0 m/s, and the radar is stationary. Find
the Doppler shift that corresponds to this relative speed.

v = 1000.0;
dop = speed2dop(v,c/fc)

dop = 1.0007

From the formula, the one-way doppler shift is 1 Hz.

Create a phased.FreeSpace System object™, and use it to propagate the signal from
the radar to the target. Assume the radar is at (0, 0, 0) and the target is at (100, 0, 0).

channel = phased.FreeSpace('SampleRate',fs,...
   'PropagationSpeed',c,'OperatingFrequency',fc);
origin_pos = [0;0;0];
dest_pos = [100;0;0];
origin_vel = [0;0;0];
dest_vel = [-v;0;0];
y = channel(x,origin_pos,dest_pos,origin_vel,dest_vel);

Plot the spectrum of the transmitted signal. The peak at 150 Hz reflects the frequency of
the signal.

window = 64;
ovlp = 32;
[Pxx,F] = pwelch(x,window,ovlp,N,fs);
plot(F,10*log10(Pxx))
xlabel('Frequency (Hz)')
ylabel('Power/Frequency (dB/Hz)')
title('Transmitted Signal')
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Plot the spectrum of the propagated signal. The peak at 250 Hz reflects the frequency of
the signal plus the Doppler shift of 100 Hz.

window = 64;
ovlp = 32;
[Pyy,F] = pwelch(y,window,ovlp,N,fs);
plot(F,10*log10(Pyy))
grid
xlabel('Frequency (Hz)')
ylabel('Power/Frequency (dB/Hz)')
title('Propagated Signal')
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The doppler shift is too small to see. Overlay the two spectra in the region of 150 Hz.

figure
idx = find(F>=130 & F<=170);
plot(F(idx),10*log10(Pxx(idx)),'b')
grid
hold on
plot(F(idx),10*log10(Pyy(idx)),'r')
hold off
xlabel('Frequency (Hz)')
ylabel('Power/Frequency (dB/Hz)')
title('Transmitted and Propagated Signals')
legend('Transmitted','Propagated')
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The peak shift appears to be approximately 1 Hz.
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Two-Ray Multipath Propagation
A two-ray propagation channel is the next step up in complexity from a free-space channel
and is the simplest case of a multipath propagation environment. The free-space channel
models a straight-line line-of-sight path from point 1 to point 2. In a two-ray channel, the
medium is specified as a homogeneous, isotropic medium with a reflecting planar
boundary. The boundary is always set at z = 0. There are at most two rays propagating
from point 1 to point 2. The first ray path propagates along the same line-of-sight path as
in the free-space channel (see the phased.FreeSpace System object). The line-of-sight
path is often called the direct path. The second ray reflects off the boundary before
propagating to point 2. According to the Law of Reflection , the angle of reflection equals
the angle of incidence. In short-range simulations such as cellular communications
systems and automotive radars, you can assume that the reflecting surface, the ground or
ocean surface, is flat.

The phased.TwoRayChannel and phased.WidebandTwoRayChannel System objects
model propagation time delay, phase shift, Doppler shift, and loss effects for both paths.
For the reflected path, loss effects include reflection loss at the boundary.

The figure illustrates two propagation paths. From the source position, ss, and the
receiver position, sr, you can compute the arrival angles of both paths, θ′los and θ′rp. The
arrival angles are the elevation and azimuth angles of the arriving radiation with respect
to a local coordinate system. In this case, the local coordinate system coincides with the
global coordinate system. You can also compute the transmitting angles, θlos and θrp. In
the global coordinates, the angle of reflection at the boundary is the same as the angles
θrp and θ′rp. The reflection angle is important to know when you use angle-dependent
reflection-loss data. You can determine the reflection angle by using the rangeangle
function and setting the reference axes to the global coordinate system. The total path
length for the line-of-sight path is shown in the figure by Rlos which is equal to the
geometric distance between source and receiver. The total path length for the reflected
path is Rrp= R1 + R2. The quantity L is the ground range between source and receiver.
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You can easily derive exact formulas for path lengths and angles in terms of the ground
range and object heights in the global coordinate system.
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R = x s− x r

Rlos = R = zr − zs
2 + L2

R1 =
zr

zr + zz
zr + zs

2 + L2

R2 =
zs

zs + zr
zr + zs

2 + L2

Rrp = R1 + R2 = zr + zs
2 + L2

tanθlos =
zs− zr

L

tanθrp = −
zs + zr

L
θ′los = − θlos

θ′rp = θrp
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Free-Space Propagation of Wideband Signals
Propagate a wideband signal with three tones in an underwater acoustic with constant
speed of propagation. You can model this environment as free space. The center
frequency is 100 kHz and the frequencies of the three tones are 75 kHz, 100 kHz, and
125 kHz, respectively. Plot the spectrum of the original signal and the propagated signal
to observe the Doppler effect. The sampling frequency is 100 kHz.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

c = 1500;
fc = 100e3;
fs = 100e3;
relfreqs = [-25000,0,25000];

Set up a stationary radar and moving target and compute the expected Doppler.

rpos = [0;0;0];
rvel = [0;0;0];
tpos = [30/fs*c; 0;0];
tvel = [45;0;0];
dop = -tvel(1)./(c./(relfreqs + fc));

Create a signal and propagate the signal to the moving target.

t = (0:199)/fs;
x = sum(exp(1i*2*pi*t.'*relfreqs),2);
channel = phased.WidebandFreeSpace(...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc,...
    'SampleRate',fs);
y = channel(x,rpos,tpos,rvel,tvel);

Plot the spectra of the original signal and the Doppler-shifted signal.

periodogram([x y],rectwin(size(x,1)),1024,fs,'centered')
ylim([-150 0])
legend('original','propagated');
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For this wideband signal, you can see that the magnitude of the Doppler shift increases
with frequency. In contrast, for narrowband signals, the Doppler shift is assumed constant
over the band.
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Radar Target

Radar Target Properties
The phased.RadarTarget System object models a reflected signal from a target. The
target may have a nonfluctuating or fluctuating radar cross section (RCS). This object has
the following modifiable properties:

• MeanRCSSource — Source of the target's mean radar cross section
• MeanRCS — Target's mean RCS
• Model — Statistical model for the target's RCS
• PropagationSpeed — Signal propagation speed
• OperatingFrequency — Operating frequency
• SeedSource — Source of the seed for the random number generator to generate the

target's random RCS values
• Seed — Seed for the random number generator

Gain for Nonfluctuating RCS Target
Create a radar target with a nonfluctuating RCS of 1 square meter and an operating
frequency of 1 GHz. Specify a wave propagation speed equal to the speed of light.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

sigma = 1.0;
target = phased.RadarTarget('Model','nonfluctuating','MeanRCS',sigma,...
    'PropagationSpeed',physconst('LightSpeed'),'OperatingFrequency',1e9);

For a nonfluctuation target, the reflected waveform equals the incident waveform scaled
by the gain

G = 4πσ
λ2

Here, σ represents the mean target RCS, and λ is the wavelength of the operating
frequency.

9 Environment and Target Models

9-16



Set the signal incident on the target to be a vector of ones to obtain the gain factor used
by the phased.RadarTarget System object™.

x = ones(10,1);
y = target(x)

y = 10×1

   11.8245
   11.8245
   11.8245
   11.8245
   11.8245
   11.8245
   11.8245
   11.8245
   11.8245
   11.8245

Compute the gain from the formula to verify that the output of the System object equals
the theoretical value.

lambda = target.PropagationSpeed/target.OperatingFrequency;
G = sqrt(4*pi*sigma/lambda^2)

G = 11.8245

Fluctuating RCS Targets
The previous examples used nonfluctuating values for the target's RCS. This model is not
valid in many scenarios. There are several cases where the RCS exhibits relatively small
or large magnitude fluctuations. These fluctuations can occur rapidly on pulse-to-pulse, or
more slowly, on scan-to-scan time scales:

• Several small randomly distributed reflectors with no dominant reflector —
This target, at close range or when the radar uses pulse-to-pulse frequency agility, can
exhibit large magnitude rapid (pulse-to-pulse) fluctuations in the RCS. That same
complex reflector at long range with no frequency agility can exhibit large magnitude
fluctuations in the RCS over a longer time scale (scan-to-scan).

 Radar Target
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• Dominant reflector along with several small reflectors — The reflectors in this
target can exhibit small magnitude fluctuations on pulse-to-pulse or scan-to-scan time
scales, subject to:

• How rapidly the aspect changes
• Whether the radar uses frequency agility

To account for significant fluctuations in the RCS, you need to use statistical models. The
four Swerling models, described in the following table, are widely used to cover these
kinds of fluctuating-RCS cases.

Swerling Case Number Description
I Scan-to-scan decorrelation. Rayleigh/

exponential PDF — A number of randomly
distributed scatterers with no dominant
scatterer.

II Pulse-to-pulse decorrelation. Rayleigh/
exponential PDF — A number of randomly
distributed scatterers with no dominant
scatterer.

III Scan-to-scan decorrelation — Chi-square
PDF with 4 degrees of freedom. A number
of scatterers with one scatterer dominant.

IV Pulse-to-pulse decorrelation — Chi-square
PDF with 4 degrees of freedom. A number
of scatterers with one scatterer dominant.

You can simulate a Swerling target model by setting the Model property. Use the step
method and set the UPDATERCS input argument to true or false. Setting UPDATERCS to
true updates the RCS value according to the specified probability model each time you
call step. If you set UPDATERCS to false, the previous RCS value is used.

Model Pulse Reflection From Nonfluctuating Target
This example creates and transmits a linear FM waveform with a 1 GHz carrier frequency.
The waveform is transmitted and collected by an isotropic antenna with a back-baffled
response. The waveform propagates to and from a target with a nonfluctuating RCS of 1
square meter. The target is located at a range of 1.414 km from the antenna at an
azimuth angle of 45° and an elevation of 0°.
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Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Set up the radar system.

antenna = phased.IsotropicAntennaElement('BackBaffled',true);
antennapos = phased.Platform('InitialPosition',[0;0;0]);
targetpos = phased.Platform('InitialPosition',[1000; 1000; 0]);
waveform = phased.LinearFMWaveform('PulseWidth',100e-6);
transmitter = phased.Transmitter('PeakPower',1e3,'Gain',40);
radiator = phased.Radiator('OperatingFrequency',1e9, ...
    'Sensor',antenna);
channel = phased.FreeSpace('OperatingFrequency',1e9,...
    'TwoWayPropagation',true);
target = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',1e9);
collector = phased.Collector('OperatingFrequency',1e9,...
    'Sensor',antenna);

Compute the transmitted and received waveforms

wav = waveform();
txwav = transmitter(wav);
radwav = radiator(txwav,[0 0]');
propwav = channel(radwav,antennapos.InitialPosition,...
    targetpos.InitialPosition,[0;0;0],[0;0;0]); 
reflwav = target(propwav);
collwav = collector(reflwav,[45 0]');
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Swerling 1 Target Models
The example presents a scenario consisting of a rotating monostatic radar and a target
with a radar cross-section described by a Swerling 1 model. In this example, the radar
and target are stationary.

Swerling 1 versus Swerling 2 Models

For Swerling 1 and Swerling 2 target models, the total RCS arises from many
independent small scatterers of approximately equal individual RCS. The total RCS may
vary with every pulse in a scan (Swerling 2) or may be constant over a complete scan
consisting of multiple pulses (Swerling 1). In either case, the statistics obey a chi-squared
probability density function with two degrees of freedom.

Dwell Time and Radar Scan

For simplicity, start with a rotating radar having a rotation time of 5 seconds
corresponding to a rotation rate or scan rate of 72 degrees/sec.

Trot = 5.0;
rotrate = 360/Trot;

The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time that
a target is illuminated by the main beam, radar pulses strike the target and reflect back
to the radar. The time period during which the target is illuminated is called the dwell
time. This time period is also called a scan. The example will process 3 scans of the
target.

HPBW = 3.0;
Tdwell = HPBW/rotrate;
Nscan = 3;

The number of pulses that arrive on target during the dwell time depends upon the pulse
repetition frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI).
Assume 5000 pulses are transmitted per second.

prf = 5000.0;
pri = 1/prf;

The number of pulses in one dwell time is

Np = floor(Tdwell*prf);
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Set up a Swerling 1 radar model

You create a Swerling 1 target by properly employing the step method of the
RadarTarget System object™. To effect a Swerling 1 model, set the Model property of
the phased.RadarTarget System object™ to either 'Swerling1' or 'Swerling2'.
Both are equivalent. Then, at the first call to the step method at the beginning of the
scan, set the updatercs argument to true. Set updatercs to false for the remaining
calls to step during the scan. This means that the radar cross section is only updated at
the beginning of a scan and remains constant for the remainder of the scan.

Set the target model to 'Swerling1'.

tgtmodel = 'Swerling1';

Set up radar model System object™ components

Set up the radiating antenna. Assume the operating frequency of the antenna is 1GHz.

fc = 1e9;
antenna = phased.IsotropicAntennaElement('BackBaffled',true);
radiator = phased.Radiator('OperatingFrequency',fc, ...
    'Sensor',antenna);

Specify the location of the stationary antenna.

radarplatform = phased.Platform('InitialPosition',[0;0;0]);

Specify the location of a stationary target.

targetplatform = phased.Platform('InitialPosition',[2000; 0; 0]);

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step
method.

waveform = phased.LinearFMWaveform('PulseWidth',50e-6,...
    'OutputFormat','Pulses','NumPulses',1);

Set up the transmitting amplifier.

transmitter = phased.Transmitter('PeakPower',1000.0,'Gain',40);

Set up the propagation environment to be free space.

channel = phased.FreeSpace('OperatingFrequency',fc,'TwoWayPropagation',true);
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Specify the radar target to have a mean RCS of 1 m2 and be of the Swerling model type 1
or 2. You can use Swerling 1 or 2 interchangeably.

target = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc,...
    'Model',tgtmodel);

Set up the radar collector.

collector = phased.Collector('OperatingFrequency',1e9,...
    'Sensor',antenna);

Define a matched filter to process the incoming signal.

wav = step(waveform);
filter = phased.MatchedFilter('Coefficients',getMatchedFilter(waveform));

Processing loop for 3 scans of a Swerling 1 target

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the target
5 Reflect waveform from radar target
6 Collect radiation to create received signal
7 Match filter received signal

Provide memory for radar return amplitudes

z = zeros(Nscan,Np);
tp = zeros(Nscan,Np);

Enter the loop. Set updatercs to true only for the first pulse of the scan.

for m = 1:Nscan
    t0 = (m-1)*Trot;
    t = t0;
    for k = 1:Np

        if k == 1
            updatercs = true;
        else
            updatercs = false;
        end
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        t = t + pri;
        txwav = transmitter(wav);

Find the radar and target positions

        [xradar,vradar] = radarplatform(t);
        [xtgt,vtgt] = targetplatform(t);

Radiate waveform to target

        [~,ang] = rangeangle(xtgt,xradar);
        radwav = radiator(txwav,ang);

Propagate waveform to and from the target

        propwav = channel(radwav,xradar,xtgt,vradar,vtgt);

Reflect waveform from target. Set the updatercs flag.

        reflwav = target(propwav,updatercs);

Collect the received waveform

        collwav = collector(reflwav,ang);

Apply matched filter to incoming signal

        y = filter(collwav);
        z(m,k) = max(abs(y));
        tp(m,k) = t;

    end
end

Plot the pulse amplitudes

Plot the amplitudes of the pulses for the scan as a function of time.

plot(tp(:),z(:),'.')
xlabel('Time (sec)')
ylabel('Pulse Amplitudes')
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Notice that the pulse amplitudes are constant within a scan.
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Swerling Target Models
The example illustrates the use of Swerling target models to describe the fluctuations in
radar cross-section. The scenario consists of a rotating monostatic radar and a target
having a radar cross-section described by a Swerling 2 model. In this example, the radar
and target are stationary.

Swerling 1 versus Swerling 2 Models

In Swerling 1 and Swerling 2 target models, the total RCS arises from many independent
small scatterers of approximately equal individual RCS. The total RCS may vary with
every pulse in a scan (Swerling 2) or may be constant over a complete scan consisting of
multiple pulses (Swerling 1). In either case, the statistics obey a chi-squared probability
density function with two degrees of freedom.

Dwell Time and Radar Scan

For simplicity, start with a rotating radar having a rotation time of 5 seconds
corresponding to a rotation or scan rate of 72 degrees/sec.

Trot = 5.0;
scanrate = 360/Trot;

The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time that
a target is illuminated by the main beam, radar pulses strike the target and reflect back
to the radar. The time period during which the target is illuminated is called the dwell
time. This time is also called a scan. The radar will process 3 scans of the target.

HPBW = 3.0;
Tdwell = HPBW/scanrate;
Nscan = 3;

The number of pulses that arrive on target during the dwell time depends upon the pulse
repetition frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI).
Assume 5000 pulses are transmitted per second.

prf = 5000.0;
pri = 1/prf;

The number of pulses in one dwell time is

Np = floor(Tdwell*prf);

 Swerling Target Models

9-25



Set up a Swerling 2 model

You create a Swerling 2 target by properly employing the step method of the
RadarTarget System object™. To effect a Swerling 2 model, set the Model property of
the phased.RadarTarget System object™ to either 'Swerling1' or 'Swerling2'.
Both are equivalent. Then, at the every call to the step method, set the updatercs
argument to true. This means that the radar cross-section is updated at every pulse.

Set the target model to 'Swerling1' .

tgtmodel = 'Swerling2';

Set up radar model System object™ components

Set up the radiating antenna. Assume the operating frequency of the antenna is 1GHz.

fc = 1e9;
antenna = phased.IsotropicAntennaElement('BackBaffled',true);
radiator = phased.Radiator('OperatingFrequency',fc,'Sensor',antenna);

Specify the location of the stationary antenna.

radarplatform = phased.Platform('InitialPosition',[0;0;0]);

Specify the location of a stationary target.

targetplatform = phased.Platform('InitialPosition',[2000; 0; 0]);

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step
method.

waveform = phased.LinearFMWaveform('PulseWidth',50e-6,...
    'OutputFormat','Pulses','NumPulses',1);

Set up the transmitting amplifier.

transmitter = phased.Transmitter('PeakPower',1000.0,'Gain',40);

Set up the propagation environment to be free space.

channel = phased.FreeSpace('OperatingFrequency',fc,...
    'TwoWayPropagation',true);

Specify the radar target to have a mean RCS of 1 m2 and be of the Swerling model type 1
or 2. You can use Swerling 1 or 2 interchangeably.
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target = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc,...
    'Model',tgtmodel);

Set up the radar collector.

collector = phased.Collector('OperatingFrequency',1e9,...
    'Sensor',antenna);

Define a matched filter to process the incoming signal.

wav = waveform();
filter = phased.MatchedFilter(...
    'Coefficients',getMatchedFilter(waveform));

Processing loop for 3 scans of a Swerling 2 target

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the radar target
5 Reflect waveform from radar target.
6 Collect radiation to create received signal
7 Match filter received signal

Provide memory for radar return amplitudes

z = zeros(Nscan,Np);
tp = zeros(Nscan,Np);

Enter the loop. Set updatercs to true only for the first pulse of the scan.

for m = 1:Nscan
    t0 = (m-1)*Trot;
    t = t0;
    updatercs = true;
    for k = 1:Np

        t = t + pri;
        txwav = transmitter(wav);

Find the radar and target positions
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        [xradar,vradar] = radarplatform(t);
        [xtgt,vtgt] = targetplatform(t);

Radiate waveform to target

        [~,ang] = rangeangle(xtgt,xradar);
        radwav = radiator(txwav,ang);

Propagate waveform to and from the target

        propwav = channel(radwav,radarplatform.InitialPosition,...
            targetplatform.InitialPosition,[0;0;0],[0;0;0]);

Reflect waveform from target. Set the updatercs flag.

        reflwav = target(propwav,updatercs);

Collect the received waveform

        collwav = collector(reflwav,ang);

Apply matched filter to incoming signal

        y = filter(collwav);
        z(m,k) = max(abs(y));
        tp(m,k) = t;

    end
end

Plot the pulse amplitudes

Plot the amplitudes of the pulses for the scan as a function of time.

plot(tp(:),z(:),'.')
xlabel('Time (sec)')
ylabel('Pulse Amplitude')
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Notice that the pulse amplitudes vary within a scan.

Histogram the received pulse amplitudes

figure;
hist(z(:),25)
xlabel('Pulse Amplitude')
ylabel('Count')
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Swerling 3 Target Models
The example presents a scenario of a rotating monostatic radar and a target having a
radar cross-section described by a Swerling 3 model. In this example, the radar and
target are stationary.

Swerling 3 versus Swerling 4 Models

In Swerling 3 and Swerling 4 target models, the total RCS arises from a target consisting
of one large scattering surface with several other small scattering surfaces. The total RCS
may vary with every pulse in a scan (Swerling 4) or may be constant over a complete scan
consisting of multiple pulses (Swerling 3). In either case, the statistics obey a chi-squared
probability density function with four degrees of freedom.

Dwell Time and Radar Scan

For simplicity, start with a rotating radar having a rotation time of 5 seconds
corresponding to a rotation or scan rate of 72 degrees/sec.

Trot = 5.0;
scanrate = 360/Trot;

The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time that
a target is illuminated by the main beam, radar pulses strike the target and reflect back
to the radar. The time period during which the target is illuminated is called the dwell
time. This time is also called a scan. The radar will process 3 scans of the target.

HPBW = 3.0;
Tdwell = HPBW/scanrate;
Nscan = 3;

The number of pulses that arrive on target during the dwell time depends upon the pulse
repetition frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI).
Assume 5000 pulses are transmitted per second.

prf = 5000.0;
pri = 1/prf;

The number of pulses in one dwell time is

Np = floor(Tdwell*prf);
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Set up Swerling 3 radar model

You create a Swerling 3 target by properly employing the step method of the
RadarTarget System object™. To effect a Swerling 3 model, set the Model property of
the phased.RadarTarget System object™ to either 'Swerling3' or 'Swerling4'.
Both are equivalent. Then, at the first call to the step method at the beginning of the
scan, set the updatercs argument to true. Set updatercs to false for the remaining
calls to step during the scan. This means that the radar cross section is only updated at
the beginning of a scan and remains constant for the remainder of the scan.

Set the target model to 'Swerling3' .

tgtmodel = 'Swerling3';

Set up radar model System object™ components

Set up the radiating antenna. Assume the operating frequency of the antenna is 1GHz.

fc = 1e9;
antenna = phased.IsotropicAntennaElement('BackBaffled',true);
radiator = phased.Radiator('OperatingFrequency',fc,'Sensor',antenna);

Specify the location of the stationary antenna.

radarplatform = phased.Platform('InitialPosition',[0;0;0]);

Specify the location of a stationary target.

targetplatform = phased.Platform('InitialPosition',[2000; 0; 0]);

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step
method.

waveform = phased.LinearFMWaveform('PulseWidth',50e-6,...
    'OutputFormat','Pulses','NumPulses',1);

Set up the transmitting amplifier.

transmitter = phased.Transmitter('PeakPower',1000.0,'Gain',40);

Set up the propagation environment to be free space.

channel = phased.FreeSpace('OperatingFrequency',fc,...
    'TwoWayPropagation',true);

9 Environment and Target Models

9-32



Specify the radar target to have a mean RCS of 1 m2 and be of the Swerling model type 3
or 4. You can use Swerling 3 or 4 interchangeably.

target = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc,...
    'Model',tgtmodel);

Set up the radar collector.

collector = phased.Collector('OperatingFrequency',1e9,...
    'Sensor',antenna);

Define a matched filter to process the incoming signal.

wav = step(waveform);
filter = phased.MatchedFilter('Coefficients',getMatchedFilter(waveform));

Processing loop for 3 scans of a Swerling 3 target

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the radar target
5 Reflect waveform from radar target
6 Collect radiation to create received signal
7 Match filter received signal

Provide memory for radar return amplitudes

z = zeros(Nscan,Np);
tp = zeros(Nscan,Np);

Enter the loop. Set updatercs to true only for the first pulse of the scan.

for m = 1:Nscan
    t0 = (m-1)*Trot;
    t = t0;
    for k = 1:Np

        if k == 1
            updatercs = true;
        else
            updatercs = false;
        end
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        t = t + pri;
        txwav = transmitter(wav);

Find the radar and target positions

        [xradar,vradar] = radarplatform(pri);
        [xtgt,vtgt] = targetplatform(pri);

Radiate waveform to target

        [~,ang] = rangeangle(xtgt,xradar);
        radwav = radiator(txwav,ang);

Propagate waveform to and from the target

        propwav = channel(radwav,xradar,xtgt,vradar,vtgt);

Reflect waveform from target. Set the updatercs flag.

        reflwav = target(propwav,updatercs);

Collect the received waveform

        collwav = collector(reflwav,ang);

Apply matched filter to incoming signal

        y = filter(collwav);
        z(m,k) = max(abs(y));
        tp(m,k) = t;

    end
end

Plot the pulse amplitudes

Plot the amplitudes of the pulses for the scan as a function of time.

plot(tp(:),z(:),'.')
xlabel('Time (sec)')
ylabel('Pulse Amplitude')
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Notice that the pulse amplitudes are constant within a scan.
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Swerling 4 Target Models
The example presents a scenario of a rotating monostatic radar and a target having a
radar cross-section described by a Swerling 4 model. In this example, the radar and
target are stationary.

Swerling 3 versus Swerling 4 Targets

In Swerling 3 and Swerling 4 target models, the total RCS arises from a target consisting
of one large scattering surface with several other small scattering surfaces. The total RCS
may vary with every pulse in a scan (Swerling 4) or may be constant over a complete scan
consisting of multiple pulses (Swerling 3). In either case, the statistics obey a chi-squared
probability density function with four degrees of freedom.

Dwell Time and Radar Scan

For simplicity, start with a rotating radar having a rotation time of 5 seconds
corresponding to a rotation or scan rate of 72 degrees/sec.

Trot = 5.0;
scanrate = 360/Trot;

The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time that
a target is illuminated by the main beam, radar pulses strike the target and reflect back
to the radar. The time period during which the target is illuminated is called the dwell
time. This time is also called a scan. The radar will process 3 scans of the target.

HPBW = 3.0;
Tdwell = HPBW/scanrate;
Nscan = 3;

The number of pulses that arrive on target during the dwell time depends upon the pulse
repetition frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI).
Assume 5000 pulses are transmitted per second.

prf = 5000.0;
pri = 1/prf;

The number of pulses in one dwell time is

Np = floor(Tdwell*prf);
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Set up a Swerling 4 model

You create a Swerling 4 target by properly employing the step method of the
RadarTarget System object™. To effect a Swerling 4 model, set the Model property of
the phased.RadarTarget System object™ to either 'Swerling3' or 'Swerling4'.
Both are equivalent. Then, at the every call to the step method, set the updatercs
argument to true. This means that the radar cross section is updated for every pulse in
the scan.

Set the target model to 'Swerling4' .

tgtmodel = 'Swerling4';

Set up radar model System object™ components

Set up the radiating antenna. Assume the operating frequency of the antenna is 1GHz.

fc = 1e9;
antenna = phased.IsotropicAntennaElement('BackBaffled',true);
radiator = phased.Radiator('OperatingFrequency',fc, ...
    'Sensor',antenna);

Specify the location of the stationary antenna.

radarplatform = phased.Platform('InitialPosition',[0;0;0]);

Specify the location of a stationary target.

targetplatform = phased.Platform('InitialPosition',[2000; 0; 0]);

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step
method.

waveform = phased.LinearFMWaveform('PulseWidth',50e-6, ...
    'OutputFormat','Pulses','NumPulses',1);

Set up the transmitting amplifier.

transmitter = phased.Transmitter('PeakPower',1000.0,'Gain',40);

Set up the propagation environment to be free space.

channel = phased.FreeSpace('OperatingFrequency',fc, ...
    'TwoWayPropagation',true);
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Specify the radar target to have a mean RCS of 1 m2 and be of the Swerling model type 1
or 2. You can use Swerling 1 or 2 interchangeably.

target = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc, ...
    'Model',tgtmodel);

Set up the radar collector.

collector = phased.Collector('OperatingFrequency',1e9, ...
    'Sensor',antenna);

Define a matched filter to process the incoming signal.

wav = waveform();
filter = phased.MatchedFilter('Coefficients',getMatchedFilter(waveform));

Processing loop for 3 scans of a Swerling 4 target

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the radar target
5 Reflect waveform from radar target.
6 Collect radiation to create received signal
7 Match filter received signal

Provide memory for radar return amplitudes

z = zeros(Nscan,Np);
tp = zeros(Nscan,Np);

Enter the loop. Set updatercs to true only for all pulses of the scan.

for m = 1:Nscan
    t0 = (m-1)*Trot;
    t = t0;
    updatercs = true;
    for k = 1:Np

        t = t + pri;
        txwav = transmitter(wav);

Find the radar and target positions
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        [xradar,vradar] = radarplatform(pri);
        [xtgt,vtgt] = targetplatform(pri);

Radiate waveform to target

        [~,ang] = rangeangle(xtgt,xradar);
        radwav = radiator(txwav,ang);

Propagate waveform to and from the target

        propwav = channel(radwav,xradar,xtgt,vradar,vtgt);

Reflect waveform from target. Set the updatercs flag.

        reflwav = target(propwav,updatercs);

Collect the received waveform

        collwav = collector(reflwav,ang);

Apply matched filter to incoming signal

        y = step(filter,collwav);
        z(m,k) = max(abs(y));
        tp(m,k) = t;

    end
end

Plot the pulse amplitudes

Plot the amplitudes of the pulses for the scan as a function of time.

plot(tp(:),z(:),'.')
xlabel('Time (sec)')
ylabel('Pulse Amplitude')
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Notice that the pulse amplitudes vary within a scan.

Histogram the received pulse amplitudes

hist(z(:),25)
xlabel('Pulse Amplitude')
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Clutter Modeling
In this section...
“Surface Clutter Overview” on page 9-42
“Approaches for Clutter Simulation or Analysis” on page 9-42
“Considerations for Setting Up a Constant Gamma Clutter Simulation” on page 9-43
“Related Examples” on page 9-44

Surface Clutter Overview
Surface clutter refers to reflections of a radar signal from land, sea, or the land-sea
interface. When trying to detect or track targets moving on or above the surface, you
must be able to distinguish between clutter and the targets of interest. For example, a
ground moving target indicator (GMTI) radar application should detect targets on the
ground while accounting for radar reflections from trees or houses.

If you are simulating a radar system, you might want to incorporate surface clutter into
the simulation to ensure the system can overcome the effects of surface clutter. If you are
analyzing the statistical performance of a radar system, you might want to incorporate
clutter return distributions into the analysis.

Approaches for Clutter Simulation or Analysis
Phased Array System Toolbox software offers these tools to help you incorporate surface
clutter into your simulation or analysis:

• phased.ConstantGammaClutter, a System object that simulates clutter returns
using the constant gamma model

• Utility functions to help you implement your own clutter models:

• billingsleyicm
• depressionang
• effearthradius
• grazingang
• horizonrange

9 Environment and Target Models

9-42



• surfclutterrcs
• surfacegamma

Considerations for Setting Up a Constant Gamma Clutter
Simulation
When you use phased.ConstantGammaClutter, you must configure the object for the
situation you are simulating, and confirm that the assumptions the software makes are
valid for your system.

Physical Configuration Properties

The ConstantGammaClutter object has properties that correspond to physical aspects
of the situation you are modeling. These properties include:

• Propagation speed, sample rate, and pulse repetition frequency of the signal
• Operating frequency of the system
• Altitude, speed, and direction of the radar platform
• Depression angle of the broadside of the radar antenna array

Clutter-Related Properties

The object has properties that correspond to the clutter characteristics, location, and
modeling fidelity. These properties include:

• Gamma parameter that depends on the terrain type and system’s operating frequency.
• Azimuth coverage and maximum range for the clutter simulation.
• Azimuth span of each clutter patch. The software internally divides the clutter ring

into a series of adjacent, nonoverlapping clutter patches.
• Clutter coherence time. This value indicates how frequently the software changes the

set of random numbers in the clutter simulation.

In the simulation, you can use identical random numbers over a time interval or
uncorrelated random numbers. Simulation behavior slightly differs from reality, where
a moving platform produces clutter returns that are correlated with each other over
small time intervals.
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Working with Samples or Pulses

The ConstantGammaClutter object has properties that let you obtain results in a
convenient format. Using the OutputFormat property, you can choose to have the step
method produce a signal that represents:

• A fixed number of pulses. You indicate the number of pulses using the NumPulses
property of the object.

• A fixed number of samples. You indicate the number of samples using the NumSamples
property of the object. Typically, you use the number of samples in one pulse. In
staggered PRF applications, you might find this option more convenient because the
step output always has the same matrix size.

Assumptions

The clutter simulation that ConstantGammaClutter provides is based on these
assumptions:

• The radar system is monostatic.
• The propagation is in free space.
• The terrain is homogeneous.
• The clutter patch is stationary during the coherence time. Coherence time indicates

how frequently the software changes the set of random numbers in the clutter
simulation.

• Because the signal is narrowband, the spatial response and Doppler shift can be
approximated by phase shifts.

• The radar system maintains a constant height during simulation.
• The radar system maintains a constant speed during simulation.

Related Examples
• Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
• Introduction to Space-Time Adaptive Processing
• “DPCA Pulse Canceller to Reject Clutter” on page 7-9
• “Adaptive DPCA Pulse Canceller To Reject Clutter and Interference” on page 7-15
• “Sample Matrix Inversion Beamformer” on page 7-23
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Barrage Jammer
In this section...
“Support for Modeling Barrage Jammer” on page 9-45
“Model Barrage Jammer Output” on page 9-45
“Model Effect of Barrage Jammer on Target Echo” on page 9-48

Support for Modeling Barrage Jammer
The phased.BarrageJammer object models a broadband jammer. The output of
phased.BarrageJammer is a complex white Gaussian noise sequence. The modifiable
properties of the barrage jammer are:

• ERP — Effective radiated power in watts
• SamplesPerFrameSource — Source of number of samples per frame
• SamplesPerFrame — Number of samples per frame
• SeedSource — Source of seed for random number generator
• Seed — Seed for random number generator

The real and imaginary parts of the complex white Gaussian noise sequence each have
variance equal to 1/2 the effective radiated power in watts. Denote the effective radiated
power in watts by P. The barrage jammer output is:

w[n] = P
2x[n] + j P

2 y[n]

In this equation, x[n] and y[n] are uncorrelated sequences of zero-mean Gaussian
random variables with unit variance.

Model Barrage Jammer Output
This example examines the statistical properties of the barrage jammer output and how
they relate to the effective radiated power (ERP). Create a barrage jammer using an
effective radiated power of 5000 watts. Generate output at 500 samples per frame. Then
call the step function once to generate a single frame of complex data. Using the
histogram function, show the distribution of barrage jammer output values. The
BarrageJammer System object uses a random number generator. In this example, the
random number generator seed is fixed for illustrative purposes and can be removed.
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Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

rng default
jammer = phased.BarrageJammer('ERP',5000,...
    'SamplesPerFrame',500);
y = jammer();
subplot(2,1,1)
histogram(real(y))
title('Histogram of Real Part')
subplot(2,1,2)
histogram(imag(y))
title('Histogram of Imaginary Part')
xlabel('Watts')
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The mean values of the real and imaginary parts are

mean(real(y))

ans = -1.0961

mean(imag(y))

ans = -2.1671

which are effectively zero. The standard deviations of the real and imaginary parts are

std(real(y))

ans = 50.1950
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std(imag(y))

ans = 49.7448

which agree with the predicted value of ERP/2.

Model Effect of Barrage Jammer on Target Echo
This example demonstrates how to simulate the effect of a barrage jammer on a target
echo. First, create the required objects. You need an array, a transmitter, a radiator, a
target, a jammer, a collector, and a receiver. Additionally, you need to define two
propagation paths: one from the array to the target and back, and the other path from the
jammer to the array.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

antenna = phased.ULA(4); 
Fs = 1e6;
fc = 1e9;
rng('default')
waveform = phased.RectangularWaveform('PulseWidth',100e-6,...
    'PRF',1e3,'NumPulses',5,'SampleRate',Fs);
transmitter = phased.Transmitter('PeakPower',1e4,'Gain',20,...
    'InUseOutputPort',true);
radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',fc);
jammer = phased.BarrageJammer('ERP',1000,...
    'SamplesPerFrame',waveform.NumPulses*waveform.SampleRate/waveform.PRF);
target = phased.RadarTarget('Model','Nonfluctuating',...
    'MeanRCS',1,'OperatingFrequency',fc);
targetchannel = phased.FreeSpace('TwoWayPropagation',true,...
    'SampleRate',Fs,'OperatingFrequency', fc);
jammerchannel = phased.FreeSpace('TwoWayPropagation',false,...
    'SampleRate',Fs,'OperatingFrequency', fc);
collector = phased.Collector('Sensor',antenna,...
    'OperatingFrequency',fc);
amplifier = phased.ReceiverPreamp('EnableInputPort',true);

Assume that the array, target, and jammer are stationary. The array is located at the
global origin, (0,0,0). The target is located at (1000,500,0), and the jammer is located at
(2000,2000,100). Determine the directions from the array to the target and jammer.
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targetloc = [1000 ; 500; 0];
jammerloc = [2000; 2000; 100];
[~,tgtang] = rangeangle(targetloc);
[~,jamang] = rangeangle(jammerloc);

Finally, transmit the rectangular pulse waveform to the target, reflect it off the target, and
collect the echo at the array. Simultaneously, the jammer transmits a jamming signal
toward the array. The jamming signal and echo are mixed at the receiver. Generate
waveform

wav = waveform();
% Transmit waveform
[wav,txstatus] = transmitter(wav);
% Radiate pulse toward the target
wav = radiator(wav,tgtang);
% Propagate pulse toward the target
wav = targetchannel(wav,[0;0;0],targetloc,[0;0;0],[0;0;0]);
% Reflect it off the target
wav = target(wav);
% Collect the echo
wav = collector(wav,tgtang);

Generate the jamming signal

jamsig = jammer();
% Propagate the jamming signal to the array
jamsig = jammerchannel(jamsig,jammerloc,[0;0;0],[0;0;0],[0;0;0]);
% Collect the jamming signal
jamsig = collector(jamsig,jamang);

% Receive target echo alone and target echo + jamming signal
pulsewave = amplifier(wav,~txstatus);
pulsewave_jamsig = amplifier(wav + jamsig,~txstatus);

Plot the result, and compare it with received waveform with and without jamming.

subplot(2,1,1)
t = unigrid(0,1/Fs,size(pulsewave,1)*1/Fs,'[)');
plot(t*1000,abs(pulsewave(:,1)))
title('Magnitudes of Pulse Waveform Without Jamming--Element 1')
ylabel('Magnitude')
subplot(2,1,2)
plot(t*1000,abs(pulsewave_jamsig(:,1)))
title('Magnitudes of Pulse Waveform with Jamming--Element 1')
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xlabel('millisec')
ylabel('Magnitude')
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Coordinate Systems and Motion
Modeling

• “Rectangular Coordinates” on page 10-2
• “Spherical Coordinates” on page 10-13
• “Global and Local Coordinate Systems” on page 10-21
• “Global and Local Coordinate Systems Radar Example” on page 10-42
• “Motion Modeling in Phased Array Systems” on page 10-52
• “Model Motion of Circling Airplane” on page 10-57
• “Visualize Multiplatform Scenario” on page 10-60
• “Doppler Shift and Pulse-Doppler Processing” on page 10-63
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Rectangular Coordinates
In this section...
“Definitions of Coordinates” on page 10-2
“Notation for Vectors and Points” on page 10-4
“Orthogonal Basis and Euclidean Norm” on page 10-4
“Orientation of Coordinate Axes” on page 10-4
“Rotations and Rotation Matrices” on page 10-5

Definitions of Coordinates
Construct a rectangular, or Cartesian, coordinate system for three-dimensional space by
specifying three mutually orthogonal coordinate axes. The following figure shows one
possible specification of the coordinate axes.
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Rectangular coordinates specify a position in space in a given coordinate system as an
ordered 3-tuple of real numbers, (x,y,z), with respect to the origin (0,0,0). Considerations
for choosing the origin are discussed in “Global and Local Coordinate Systems” on page
10-21.

You can view the 3-tuple as a point in space, or equivalently as a vector in three-
dimensional Euclidean space. Viewed as a vector space, the coordinate axes are basis
vectors and the vector gives the direction to a point in space from the origin. Every vector
in space is uniquely determined by a linear combination of the basis vectors. The most
common set of basis vectors for three-dimensional Euclidean space are the standard unit
basis vectors:
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[1 0 0], [0 1 0], [0 0 1]

Notation for Vectors and Points
In Phased Array System Toolbox software, you specify both coordinate axes and points as
column vectors.

Note In this software, all coordinate vectors are column vectors. For convenience, the
documentation represents column vectors in the format [x y z] without transpose
notation.

Both the vector notation [x y z] and point notation (x,y,z) are used interchangeably. The
interpretation of the column vector as a vector or point depends on the context. If the
column vector specifies the axes of a coordinate system or direction, it is a vector. If the
column vector specifies coordinates, it is a point.

Orthogonal Basis and Euclidean Norm
Any three linearly independent vectors define a basis for three-dimensional space.
However, this software assumes that the basis vectors you use are orthogonal.

The standard distance measure in space is the l2 norm, or Euclidean norm. The Euclidean
norm of a vector [x y z] is defined by:

x2 + y2 + z2

The Euclidean norm gives the length of the vector measured from the origin as the
hypotenuse of a right triangle. The distance between two vectors [x0 y0 z0] and [x1 y1 z1]
is:

(x0− x1)2 + (y0− y1)2 + (z0− z1)2

Orientation of Coordinate Axes
Given an orthonormal set of basis vectors representing the coordinate axes, there are
multiple ways to orient the axes. The following figure illustrates one such orientation,
called a right-handed coordinate system. The arrows on the coordinate axes indicate the
positive directions.
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If you take your right hand and point it along the positive x-axis with your palm facing the
positive y-axis and extend your thumb, your thumb indicates the positive direction of the
z-axis.

Rotations and Rotation Matrices
In transforming vectors in three-dimensional space, rotation matrices are often
encountered. Rotation matrices are used in two senses: they can be used to rotate a
vector into a new position or they can be used to rotate a coordinate basis (or coordinate
system) into a new one. In this case, the vector is left alone but its components in the new
basis will be different from those in the original basis. In Euclidean space, there are three
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basic rotations: one each around the x, y and z axes. Each rotation is specified by an angle
of rotation. The rotation angle is defined to be positive for a rotation that is
counterclockwise when viewed by an observer looking along the rotation axis towards the
origin. Any arbitrary rotation can be composed of a combination of these three (Euler’s
rotation theorem). For example, you can rotate a vector in any direction using a sequence
of three rotations: v′ = Av = Rz(γ)Ry(β)Rx(α)v.

The rotation matrices that rotate a vector around the x, y, and z-axes are given by:

• Counterclockwise rotation around x-axis

Rx(α) =
1 0 0
0 cosα −sinα
0 sinα cosα

• Counterclockwise rotation around y-axis

Ry(β) =
cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

• Counterclockwise rotation around z-axis

Rz(γ) =
cosγ −sinγ 0
sinγ cosγ 0

0 0 1

The following three figures show what positive rotations look like for each rotation axis:
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For any rotation, there is an inverse rotation satisfying A−1A = 1. For example, the
inverse of the x-axis rotation matrix is obtained by changing the sign of the angle:

Rx
−1(α) = Rx(− α) =

1 0 0
0 cosα sinα
0 −sinα cosα

= Rx′ (α)

This example illustrates a basic property: the inverse rotation matrix is the transpose of
the original. Rotation matrices satisfy A’A = 1, and consequently det(A) = 1. Under
rotations, vector lengths are preserved as well as the angles between vectors.

We can think of rotations in another way. Consider the original set of basis vectors, i, j, k,
and rotate them all using the rotation matrix A. This produces a new set of basis vectors
i′, j,′ k′ related to the original by:
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i′ = Ai
j′ = Aj
k′ = Ak

Using the transpose, you can write the new basis vectors as a linear combinations of the
old basis vectors:

i′
j′
k′

= A′
i
j
k

Now any vector can be written as a linear combination of either set of basis vectors:

v = vxi + vyj + vzk = v′xi′ + v′yj′ + v′zk′

Using algebraic manipulation, you can derive the transformation of components for a
fixed vector when the basis (or coordinate system) rotates. This transformation uses the
transpose of the rotation matrix.

v′x
v′y
v′z

= A−1
vx
vy
vz

= A′
vx
vy
vz

The next figure illustrates how a vector is transformed as the coordinate system rotates
around the x-axis. The figure after shows how this transformation can be interpreted as a
rotation of the vector in the opposite direction.
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See Also

More About
• “Global and Local Coordinate Systems” on page 10-21
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Spherical Coordinates
In this section...
“Support for Spherical Coordinates” on page 10-13
“Azimuth and Elevation Angles” on page 10-13
“Phi and Theta Angles” on page 10-15
“U and V Coordinates” on page 10-16
“Conversion between Rectangular and Spherical Coordinates” on page 10-17
“Broadside Angles” on page 10-17
“Convert Between Broadside Angles and Azimuth and Elevation” on page 10-20

Support for Spherical Coordinates
Spherical coordinates describe a vector or point in space with a distance and two angles.
The distance, R, is the usual Euclidean norm. There are multiple conventions regarding
the specification of the two angles. They include:

• Azimuth and elevation angles
• Phi and theta angles
• u and v coordinates

Phased Array System Toolbox software natively supports the azimuth/elevation
representation. The software also provides functions for converting between the azimuth/
elevation representation and the other representations. See “Phi and Theta Angles” on
page 10-15 and “U and V Coordinates” on page 10-16.

Azimuth and Elevation Angles
In Phased Array System Toolbox software, the predominant convention for spherical
coordinates is as follows:

• Use the azimuth angle, az, and the elevation angle, el, to define the location of a point
on the unit sphere.

• Specify all angles in degrees.
• List coordinates in the sequence (az,el,R).
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The azimuth angle of a vector is the angle between the x-axis and the orthogonal
projection of the vector onto the xy plane. The angle is positive in going from the x axis
toward the y axis. Azimuth angles lie between –180 and 180 degrees. The elevation angle
is the angle between the vector and its orthogonal projection onto the xy-plane. The angle
is positive when going toward the positive z-axis from the xy plane. These definitions
assume the boresight direction is the positive x-axis.

Note The elevation angle is sometimes defined in the literature as the angle a vector
makes with the positive z-axis. The MATLAB® and Phased Array System Toolbox products
do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector shown as a green
solid line. The coordinate system is relative to the center of a uniform linear array, whose
elements appear as blue disks.
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Phi and Theta Angles
As an alternative to azimuth and elevation angles, you can use angles denoted by φ and θ
to express the location of a point on the unit sphere. To convert the φ/θ representation to
and from the corresponding azimuth/elevation representation, use coordinate conversion
functions, phitheta2azel and azel2phitheta.

The φ angle is the angle from the positive y-axis toward the positive z-axis, to the vector’s
orthogonal projection onto the yz plane. The φ angle is between 0 and 360 degrees. The θ
angle is the angle from the x-axis toward the yz plane, to the vector itself. The θ angle is
between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line. The
coordinate system is relative to the center of a uniform linear array, whose elements
appear as blue circles.

The coordinate transformations between φ/θ and az/el are described by the following
equations

sin(el) = sinϕsinθ
tan(az) = cosϕtanθ

cosθ = cos(el)cos(az)
tanϕ = tan(el)/sin(az)
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U and V Coordinates
In radar applications, it is often useful to parameterize the hemisphere x ≥ 0 using
coordinates denoted by u and v.

• To convert the φ/θ representation to and from the corresponding u/v representation,
use coordinate conversion functions phitheta2uv and uv2phitheta.

• To convert the azimuth/elevation representation to and from the corresponding u/v
representation, use coordinate conversion functions azel2uv and uv2azel.

You can define u and v in terms of φ and θ:

u = sinθcosϕ
v = sinθsinϕ

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u = coselsinaz
v = sinel

The values of u and v satisfy the inequalities

−1 ≤ u ≤ 1
−1 ≤ v ≤ 1
u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v using

tanϕ = u/v

sinθ = u2 + v2

The azimuth and elevation angles can also be written in terms of u and v

sinel = v

tanaz = u
1− u2− v2
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Conversion between Rectangular and Spherical Coordinates
The following equations define the relationships between rectangular coordinates and the
(az,el,R) representation used in Phased Array System Toolbox software.

To convert rectangular coordinates to (az,el,R):

R = x2 + y2 + z2

az = tan−1(y/x)

el = tan−1(z/ x2 + y2)

To convert (az,el,R) to rectangular coordinates:

x = Rcos(el)cos(az)
y = Rcos(el)sin(az)
z = Rsin(el)

When specifying a target’s location with respect to a phased array, it is common to refer
to its distance and direction from the array. The distance from the array corresponds to R
in spherical coordinates. The direction corresponds to the azimuth and elevation angles.

Tip To convert between rectangular coordinates and (az,el,R), use the MATLAB functions
cart2sph and sph2cart. These functions specify angles in radians. To convert between
degrees and radians, use deg2rad and rad2deg.

Broadside Angles
Broadside angles are useful when describing the response of a uniform linear array
(ULA). The array response depends directly on the broadside angle and not on the
azimuth and elevation angles. Start with a ULA and draw a plane orthogonal to the ULA
axis as shown in blue in the figure. The broadside angle is the angle between the plane
and the signal direction. To compute the broadside angle, construct a line from any point
on the signal path to the plane, orthogonal to the plane. The angle between these two
lines is the broadside angle and lies in the interval [–90°,90°]. The broadside angle is
positive when measured toward the positive direction of the array axis. Zero degrees
indicates a signal path orthogonal to the array axis. ±90° indicates paths along the array
axis. All signal paths having the same broadside angle form a cone around the ULA axis.
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The conversion from azimuth angle, az, and elevation angle, el, to broadside angle, β, is

β = sin−1(sin(az)cos(el))

This equation shows that

• For an elevation angle of zero, the broadside angle equals the azimuth angle.
• Elevation angles equally above and below the xy plane result in identical broadside

angles.

You can convert from broadside angle to azimuth angle but you must specify the elevation
angle

az = sin−1 sinβ
cos(el)

Because the signals paths for a given broadside angle, β, form a cone around the array
axis, you cannot specify the elevation angle arbitrarily. The elevation angle and broadside
angle must satisfy

el + β ≤ 90

The following figure depicts a ULA with elements spaced d meters apart along the y-axis.
The ULA is irradiated by a plane wave emitted from a point source in the far field. For
convenience, the elevation angle is zero degrees. In this case, the signal direction lies in
the xy-plane. Then, the broadside angle reduces to the azimuth angle.
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Because of the angle of arrival, the array elements are not simultaneously illuminated by
the plane wave. The additional distance the incident wave travels between array elements
is d sinβ where d is the distance between array elements. The constant time delay, τ,
between array elements is

τ = dsinβ
c ,

where c is the speed of the wave.

For broadside angles of ±90°, the signal is incident on the array parallel to the array axis
and the time delay between sensors equals ±d/c. For a broadside angle of zero, the plane
wave illuminates all elements of the ULA simultaneously and the time delay between
elements is zero.

Phased Array System Toolbox software provides functions az2broadside and
broadside2az for converting between azimuth and broadside angles.
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Convert Between Broadside Angles and Azimuth and Elevation
The following examples show how to use the az2broadside and broadside2az
functions.

A target is located at an azimuth angle of 45° and at an elevation angle of 60° relative to a
ULA. Determine the corresponding broadside angle.

bsang = az2broadside(45,60)

bsang = 20.7048

Calculate the azimuth for an incident signal arriving at a broadside angle of 45° and an
elevation of 20°.

az = broadside2az(45,20)

az = 48.8063
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Global and Local Coordinate Systems
In this section...
“Global Coordinate System” on page 10-21
“Local Coordinate Systems” on page 10-21
“Converting Between Global and Local Coordinate Systems” on page 10-39
“Convert Local Spherical Coordinates to Global Rectangular Coordinates” on page 10-
39
“Convert Global Rectangular Coordinates to Local Spherical Coordinates” on page 10-
40

Global Coordinate System
The global coordinate system describes the arena in which your radar or sonar simulation
takes place. Within this arena, you can place radar or sonar transmitters and receivers,
and targets. These objects can be either stationary or moving. You specify the location
and motion of these objects in global coordinates.

You can model the motion of all objects using the phased.Platform System object. This
System object computes the position and speed of objects using constant-velocity or
constant-acceleration models.

You can model the signals that propagate between objects in your scenario. The ray paths
that connect transmitters, targets, and receivers are specified in global coordinates. You
can propagate signals using these System objects: phased.FreeSpace,
phased.WidebandFreeSpace, phased.LOSChannel, or
phased.WidebandLOSChannel. If you model two-ray multipath propagation using the
phased.TwoRayChannel System object, the boundary plane is set at z = 0 in the global
coordinate system.

Local Coordinate Systems
When signals interact with sensors or targets, the interaction is almost always specified
as a function of the sensor or target local coordinates. Local coordinate systems are fixed
to the antennas and microphones, phased arrays, and targets. They move and rotate with
the object. Local coordinates are commonly adapted to the shape and symmetry of the
object.
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Because signals propagate in the global coordinate system, you need to be able to convert
local coordinates to the global coordinates. You do this by constructing a 3-by-3
orthonormal matrix of coordinate axes. The matrix columns represent the three
orthogonal direction vectors of the local coordinates expressed in the global coordinate
system. The coordinate axes of a local coordinate system must be orthonormal, but they
need not be parallel to the global coordinate axes.

When you need to compute the range and arrival angles of a signal, you can use the
rangeangle function. When you call this function with the source and receiver position
expressed in global coordinates, the function returns the range and arrival angles,
azimuth and elevation, with respect to the axes of the global system. However, when you
pass the orientation matrix as an additional argument, the azimuth and elevation are now
defined with respect to the local coordinate system.

You use local coordinates to specify

• the location and orientation of antenna or microphone elements of an array. The beam
pattern of an antenna array depends upon the angle of arrival or emission of radiation
with respect to the array local coordinates.

• the reflected energy from a target is a function of the incident and reflection angles
with respect to the target local coordinate axes.

Two examples of local coordinate systems are

• an airplane may have a local coordinate system with the x-axis aligned along the
fuselage axis of the body and the y-axis pointing along the port wing. Choose the z-axis
to form a right-handed coordinate system.

• a vehicle-mounted planar phased array may have a local coordinate system adapted to
the array. The x-axis of the coordinate system may point along the array normal vector.

The following figure illustrates the relationship of local and global coordinate systems in a
bistatic radar scenario. The thick solid lines represent the coordinate axes of the global
coordinate system. There are two phased arrays: a 5-by-5 transmitting uniform
rectangular array (URA) and 5-by-5 receiving URA. Each of the phased arrays carries its
own local coordinate system. The target, indicated by the red arrow, also carries a local
coordinate system.
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The next few sections review the local coordinate systems used by arrays.

Local Coordinate Systems of Arrays

The positions of the elements of any Phased Array System Toolbox array are always
defined in a local coordinate system. When you use any of the System objects that create
uniform arrays, the array element positions are defined automatically with respect to a
predefined local coordinate system. The arrays for which this property holds are the
phased.ULA, phased.URA, phased.UCA, phased.HeterogeneousULA, and
phased.HeterogeneousURA System objects. For these System objects, the arrays are
described using a few parameters such as element spacing and number of elements. The
positions of the elements are then defined with respect to the array origin located at
(0,0,0) which is the geometric center of the array. The geometric center is a good
approximation to the array phase center. The phase center of an array is the point from
which the radiating waves appear to emanate when observed in the far field. For example,
for a ULA with an odd number of elements, the elements are located at distances (-2d,-
d,0,d,2d) along the array axis.

There are array System objects for which you must explicitly specify the element
coordinates. You can use these objects for creating arbitrary array shapes. These objects
are the phased.ConformalArray and phased.HeterogeneousConformalArray
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System objects. For these arrays, the phase center of the array need not coincide with the
array origin or geometric center.

Element Boresight Directions

In addition to element positions, you need to specify the element orientations, that is, the
directions in which the elements point. Some elements are highly directional — most of
their radiated energy flows in one direction, called the main response axis (MRA). Others
are omnidirectional. Element orientation is the pointing direction of the MRA. You specify
element orientation using azimuth and elevation in the array local coordinate system. The
direction that an antenna or microphone MRA faces when transmitting or receiving a
signal is also called the boresight or look direction. For the uniform arrays, all boresight
directions of all elements are determined by array parameters. For conformal arrays, you
specify the boresight direction of each element independently.

Local Coordinate System of Uniform Linear Array
Array Origin and Phase Center

A uniform linear array (ULA) is an array of antenna or microphone elements that are
equidistantly spaced along a straight line. In the Phased Array System Toolbox, the
phased.ULA System object creates a ULA array. The geometry of the ULA orientation of
its elements is determined by three parameters: the number of elements, the distance
between elements, and the ArrayAxis property. For the ULA, the local coordinate
system is adapted to the array — the elements are automatically assigned positions in the
local coordinate system.

The positions of elements in the array are determined by the ArrayAxis property which
can take the values 'x', 'y' or 'z'. The array axis property determines the axis on
which all elements are defined. For example, when the ArrayAxis property is set to 'x',
the array elements lie along the x-axis. The elements are positioned symmetrically with
respect to the origin. Therefore, the geometric center of the array lies at the origin of the
coordinate system.

This figure shows a four-element ULA with directional elements in a local right-handed
coordinate system. The elements lie on the y-axis with their boresight axes pointing in the
x-direction. In this case, the ArrayAxis property is set to 'y.
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ULA Element Boresight Direction

In a ULA, the boresight directions of every element point in the same direction. The
direction is orthogonal to the array axis. This direction depends upon the choice of
ArrayAxis property.

ArrayAxis Property Value Element Positions and Boresight
Directions

'x' Array elements lie on the x-axis. Element
boresight vectors point along the y-axis.

'y' Array elements lie on the y-axis. Element
boresight vectors point along the x-axis.
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ArrayAxis Property Value Element Positions and Boresight
Directions

'z' Array elements lie on the z-axis. Element
boresight vectors point along the x-axis.

Local Coordinates Adapted to Uniform Linear Array

Construct two examples of a uniform linear array and display the coordinates of the
elements with respect to the local coordinate systems defined by the arrays.

First, construct a 4-element ULA with one-half meter element spacing.

sULA = phased.ULA('NumElements',4,'ElementSpacing',0.5);
ElementLocs = getElementPosition(sULA)

ElementLocs = 3×4

         0         0         0         0
   -0.7500   -0.2500    0.2500    0.7500
         0         0         0         0

viewArray(sULA)
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The origin of the array-centric local coordinate system is set to the phase center of the
array. The phase center is the average value of the array element positions.

disp(mean(ElementLocs'))

     0     0     0

Because the array has an even number of elements, no element of the array actually lies
at the phase center (0,0,0).

Next construct a 5-element ULA with thirty-centimeter element spacing.

sULA1 = phased.ULA('NumElements',5,'ElementSpacing',0.3);
ElementLocs = getElementPosition(sULA1)
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ElementLocs = 3×5

         0         0         0         0         0
   -0.6000   -0.3000         0    0.3000    0.6000
         0         0         0         0         0

viewArray(sULA1)

Because the array has an odd number of elements in each row and column, the center
element of the array lies at the phase center.
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Local Coordinate System of Uniform Rectangular Array
Array Origin and Phase Center

A uniform rectangular array (URA) is an array of antenna or microphone elements placed
on a regular two-dimensional grid. The geometry of a URA and the location and
orientation of its elements are determined by several parameters: the dimensions of the
array, the distance between elements, and the ArrayNormal property. For the URA, the
local coordinate system is adapted to the array — the elements are automatically assigned
positions in the local coordinate system. The origin of the local coordinate system is the
geometric center of the array. The phase center of the array coincides with the geometric
center. The elements are automatically assigned positions in this local coordinate system.
The positions are determined by the ArrayNormal property which can take the values
'x', 'y' or 'z'. All elements lie in a plane passing through the origin and orthogonal to
the axis specified in this property. For example, when the ArrayNormal property is set to
'x', the array elements lie in the yz-plane as shown in the figure. The figure shows a 2-
by-4 element URA with elements spaced d meters apart in both the y and z directions.
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Element Boresight Direction

In a URA, like the ULA, the boresight directions of every element point in the same
direction. You control this direction using the ArrayNormal property. For the URA shown
in the preceding figure, the ArrayNormal property is set to 'x'. Then, element
boresights point along the x-axis.
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ArrayNormal Property Value Element Positions and Boresight
Directions

'x' Array elements lie on the yz-plane. Element
boresight vectors point along the x-axis.

'y' Array elements lie on the zx-plane. Element
boresight vectors point along the y-axis.

'z' Array elements lie on the xy-plane. Element
boresight vectors point along the z-axis.

Local Coordinates Adapted to Uniform Rectangular Array

Construct two examples of uniform rectangular arrays and display the coordinates of the
elements with respect to the local coordinate systems defined by the arrays.

First, construct a 2-by-4 URA with one-half meter element spacing.

sURA = phased.URA('Size',[2 4],'ElementSpacing',[0.5 0.5]);
ElementLocs = getElementPosition(sURA)

ElementLocs = 3×8

         0         0         0         0         0         0         0         0
   -0.7500   -0.7500   -0.2500   -0.2500    0.2500    0.2500    0.7500    0.7500
    0.2500   -0.2500    0.2500   -0.2500    0.2500   -0.2500    0.2500   -0.2500

viewArray(sURA)
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The phase center of the array is the mean value of the array element positions. The origin
of the array local coordinate system is set to the phase center of the array.

disp(mean(ElementLocs'))

     0     0     0

Because the array has an even number of elements in each row and column, no element
of the array actually lies at the phase center (0,0,0).

Next construct a 5-by-3 URA with thirty-centimeter element spacing.

sURA1 = phased.URA([5 3],'ElementSpacing',[0.3 0.3]);
ElementLocs = getElementPosition(sURA1)
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ElementLocs = 3×15

         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.3000   -0.3000   -0.3000   -0.3000   -0.3000         0         0         0         0         0    0.3000    0.3000    0.3000    0.3000    0.3000
    0.6000    0.3000         0   -0.3000   -0.6000    0.6000    0.3000         0   -0.3000   -0.6000    0.6000    0.3000         0   -0.3000   -0.6000

viewArray(sURA1)

Because the array has an odd number of elements in each row and column, the center
element of the array lies at the phase center.
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A signal arrives at the array from a point 1000 meters from along the +x-axis of the global
coordinate system. The local URA array is rotated 30 degrees clockwise around the y-axis.
Compute the angle of arrival of the signal in the local array axes.

laxes = roty(30);
[rng,ang] = rangeangle([1000,0,0]',[0,0,0]',laxes)

rng = 1.0000e+03

ang = 2×1

         0
   30.0000

Local Coordinate System of Uniform Circular Array
Array Origin and Phase Center

A uniform circular array (UCA) is an array of antenna or microphone elements spaced at
equal angles around a circle. The phased.UCA System object creates a special case of a
UCA. In this case, element boresight directions point away from the array origin like
spokes of a wheel. The origin of the local coordinate system is the geometric center of the
array. The geometry of the UCA and the location and orientation of its elements is
determined by three parameters: the radius of the array, the number of elements, and the
ArrayNormal property. The elements are automatically assigned positions in the local
coordinate system. The positions are determined by the ArrayNormal property which
can take the values 'x', 'y' or 'z'. All elements lie in a plane passing through the
origin and orthogonal to the axis specified in this property. The phase center of the array
coincides with the geometric center. For example, when the ArrayNormal property is set
to 'x', the array elements lie in the yz-plane as shown in the figure. You can create a
more general UCA with arbitrary boresight directions using the
phased.ConformalArray System object.

This figure shows an 8-element UCA with elements lying in the yz plane.
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Element Boresight Directions

In a UCA defined by a phased.UCA System object, element boresight directions point
radially outward from the array origin. In the UCA shown in the preceding figure, because
the ArrayNormal property is set to 'x', the element boresight directions point radially
outward in the yz-plane.
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ArrayNormal Property Value Element Positions and Boresight
Directions

'x' Array elements lie on the yz-plane. All
element boresight vectors lie in the yz-
plane and point radially-outward from the
origin.

'y' Array elements lie on the zx-plane. All
element boresight vectors lie in the zx-
plane and point radially-outward from the
origin.

'z' Array elements lie on the xy-plane. All
element boresight vectors lie in the xy-
plane and point radially-outward from the
origin.

Local Coordinate System of Conformal Arrays
Array Origin and Phase Center

You can use phased.ConformalArray to create arrays of arbitrary shape. Unlike the
case of uniform arrays, you must specify the element positions explicitly. An N-element
array requires the specification of N 3-D coordinates in the array local coordinate system.
The origin of a conformal array can be located at any arbitrary point. The boresight
directions of the elements of a conformal array need not be parallel. The azimuth and
elevation angles defining the boresight directions are with respect to the local coordinate
system. The phase center of the array does not need to coincide with the geometric
center. The same properties apply to the phased.HeterogeneousConformalArray
array.

This illustration shows the positions and orientations of a 4-element conformal array.
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4-Element Conformal Array

Construct a 4-element array using the ConformalArray System object. Assume the
operating frequency is 900 MHz. Display the array geometry and normal vectors.

fc = 900e6;
c = physconst('LightSpeed');
lam = c/fc;
x = [1.0,-.5,0,.8]*lam/2;
y = [-.4,-1,.5,1.5]*lam/2;
z = [-.3,.3,0.4,0]*lam/2;
sIso = phased.CosineAntennaElement(...
    'FrequencyRange',[0,1e9]);
nv = [-140,-140,90,90;80,80,80,80]; 
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sConformArray = phased.ConformalArray('Element',sIso,...
    'ElementPosition',[x;y;z],...
    'ElementNormal',nv);
pos = getElementPosition(sConformArray)

pos = 3×4

    0.1666   -0.0833         0    0.1332
   -0.0666   -0.1666    0.0833    0.2498
   -0.0500    0.0500    0.0666         0

normvec = getElementNormal(sConformArray)

normvec = 2×4

  -140  -140    90    90
    80    80    80    80

viewArray(sConformArray,'ShowIndex','All','ShowNormal',true)
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Converting Between Global and Local Coordinate Systems
In many array processing applications, it is necessary to convert between global and local
coordinates. Two utility functions, global2localcoord and local2globalcoord,
perform these conversions.

Convert Local Spherical Coordinates to Global Rectangular
Coordinates
Determine the position of a target in rectangular coordinates in the global coordinate
system. First, specify the local spherical coordinates of a target with respect to a URA.

 Global and Local Coordinate Systems

10-39



The center of the URA defines the origin of the local coordinate system. The target
location in local spherical coordinates is 30° azimuth, 45° elevation, and 1000 m range. To
convert to global rectangular coordinates, specify the position of the local coordinate
system origin in global coordinates. The origin of the local coordinate system is
(1000,500,100) m from the global origin.

Convert the coordinates of the point to global rectangular coordinates. To convert from
local spherical coordinates to global rectangular coordinates, use the 'sr' option in the
call to the local2globalcoord function.

gCoord = local2globalcoord([30; 45; 1000],'sr',[1000; 500; 100])

gCoord = 3×1
103 ×

    1.6124
    0.8536
    0.8071

The target is located at (1612,854,807) m in the global coordinate system.

Copyright 2018 The MathWorks, Inc.”

Convert Global Rectangular Coordinates to Local Spherical
Coordinates
Determine the position of a target in local spherical coordinates centered at the phase
center of a URA array. The center of the URA defines the origin of the local coordinate
system and has the global rectangular coordinates (5000,3000,50). The local coordinate
axes of the URA are (0,1,0), (1,0,0), and (0,0,-1). Specify the global rectangular
coordinates of the target at (1000,500,10).

Convert the coordinates of the target to local spherical rectangular coordinates. To
convert from global rectangular coordinates to local spherical coordinates, use the 'rs'
option in the call to the global2localcoord function.

lCoord = global2localcoord([5000; 3000; 50],'rs',[1000; 500; 100], ...
    [0 1 0; 1 0 0; 0 0 -1])

lCoord = 3×1
103 ×
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    0.0580
    0.0006
    4.7173

The output has the form (az,el,rng). The target is located in local spherical coordinates at
58° azimuth, 0.6° elevation and 4717 m.

 Global and Local Coordinate Systems

10-41



Global and Local Coordinate Systems Radar Example
This example shows how several different coordinate systems come into play when
modeling a typical radar scenario. The scenario considered here is a bistatic radar system
consisting of a transmitting radar array, a target, and a receiving radar array. The
transmitting radar antenna emits radar signals that propagate to the target, reflect off the
target, and then propagate to the receiving radar.

Choose a signal frequency of 1 GHz.

fc = 1e9;
c = physconst('LightSpeed');
lam = c/fc;

Create All Radar System Components

First, set up the transmitting radar array. The transmitting array is a 5-by-5 uniform
rectangular array (URA) composed of isotropic antenna elements. The array is stationary
and is located at the position (50,50,50) meters in the global coordinate system. Although
you position arrays in the global system, array element positions are always defined in the
array local coordinate system. The transmitted signal strength in any direction is a
function of the transmitting angle in the local array coordinate system. Specify the
orientation of the array. Without any orientation, local array axes are aligned with the
global coordinate system. Choose an array orientation so that the array normal vector
points approximately in the direction of the target. Do this by rotating the array 90°
around the z-axis. Then, rotate the array slightly by 2° around the y-axis and 1° around
the z-axis again.

antenna = phased.IsotropicAntennaElement('BackBaffled',false);
txarray = phased.URA('Element',antenna','Size',[5,5],'ElementSpacing',0.4*lam*[1,1]);
txradarAx = rotz(1)*roty(2)*rotz(90);
txplatform = phased.Platform('InitialPosition',[50;50;50],...
    'Velocity',[0;0;0],'InitialOrientationAxes',txradarAx,...
    'OrientationAxesOutputPort',true);
radiator = phased.Radiator('Sensor',txarray,'PropagationSpeed',c,...
    'WeightsInputPort',true,'OperatingFrequency',fc);
steervec = phased.SteeringVector('SensorArray',txarray,'PropagationSpeed',c,...
    'IncludeElementResponse',true);

Next, position a target approximately 5 km from the transmitter along the global
coordinate system y-axis and moving in the x-direction. Typically, you specify radar cross-
section values as functions of the incident and reflected ray angles with respect to the
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local target axes. Choose any target orientation with respect to the global coordinate
system.

Simulate a non-fluctuating target, but allow the RCS to change at each call to the target
method. Set up a simple inline function, rcsval, to compute fictitious but reasonable
values for RCS at different ray angles.

tgtAx = rotz(10)*roty(15)*rotx(20);
tgtplatform = phased.Platform('InitialPosition',[100; 10000; 100],...
    'MotionModel','Acceleration','InitialVelocity',[-50;0;0],'Acceleration',[.015;.015;0],...
    'InitialOrientationAxes',tgtAx,'OrientationAxesOutputPort',true);
target = phased.RadarTarget('OperatingFrequency',fc,...
    'Model','Nonfluctuating','MeanRCSSource','Input port');
rcsval = @(az1,el1,az2,el2) 2*abs(cosd((az1+az2)/2 - 90)*cosd((el1+el2)/2));

Finally, set up the receiving radar array. The receiving array is also a 5-by-5 URA
composed of isotropic antenna elements. The array is stationary and is located 150
meters in the z-direction from the transmitting array. The received signal strength in any
direction is a function of the incident angle of the signal in the local array coordinate
system. Specify an orientation of the array. Choose an orientation so that this array also
points approximately in the y-direction towards the target but not quite aligned with the
first array. Do this by rotating the array 92° around the z-axis and then 5° around the x-
axis.

rxradarAx = rotx(5)*rotz(92);
rxradarAx = rotx(-.2)*rotz(92);

rxplatform = phased.Platform('InitialPosition',[50;50;200],...
    'Velocity',[0;0;0],'InitialOrientationAxes',rxradarAx,...
    'OrientationAxesOutputPort',true);
rxarray = phased.URA('Element',antenna','Size',[5,5],'ElementSpacing',0.4*lam*[1,1]);

In summary, four different coordinate systems are needed to describe the radar scenario.
These are

1 The global coordinate system.
2 A local radar coordinate system defined by the transmitting radar axes.
3 A local coordinate system defined by the target axes.
4 A second local radar coordinate system defined by the receiving radar axes.

The figure here illustrates the four coordinate systems. It is not to scale and does not
accurately represent the scenario in the example code.
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Specify Transmitted Waveform and Transmitter Amplification

Use a linear FM waveform as the transmitted signal. Assume a sampling frequency of 1
MHz, a pulse repetition frequency of 5 kHz, and a pulse length of 100 microseconds. Set
the transmitter peak output power to 1000 W and the gain to 40.0.

tau = 100e-6;
prf = 5000;
fs = 1e6;
waveform = phased.LinearFMWaveform('PulseWidth',tau,...
    'OutputFormat','Pulses','NumPulses',1,'PRF',prf,'SampleRate',fs);
transmitter = phased.Transmitter('PeakPower',1000.0,'Gain',40);

Create a matched filter from the transmitted waveform.

filter = phased.MatchedFilter('Coefficients',getMatchedFilter(waveform));
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Specify Propagation Channels

Use free-space models for the propagation of the signal from the transmitting radar to the
target and back to the receiving radar.

channel1 = phased.FreeSpace('OperatingFrequency',fc,...
    'TwoWayPropagation',false);
channel2 = phased.FreeSpace('OperatingFrequency',fc,...
    'TwoWayPropagation',false);

Specify Phaseshift Beamformer

Create a phase-shift beamformer. Point the mainlobe of the beamformer in a specific
direction with respect to the local receiver coordinate system. This direction is chosen to
be one through which the target passes at some time in its motion. This choice lets us
demonstrate how the beamformer response changes as the target passes through the
mainlobe.

rxangsteer = [22.2244;-5.0615];
rxangsteer = [10;-.07];
beamformer = phased.PhaseShiftBeamformer('SensorArray',rxarray,...
    'DirectionSource','Property','Direction',rxangsteer,...
    'PropagationSpeed',c,'OperatingFrequency',fc);

Simulation loop

Each iteration of the processing loop performs these operations:

1 Updates positions of the radars and target.
2 Generates the LFM waveform.
3 Amplifies the waveform.
4 Radiates the signal from the transmitting antenna array.
5 Propagates the signal to the target.
6 Reflects the signal from the target.
7 Propagates the signal from the target to the receiving antenna array.
8 Collects the received signal at the receiving antenna.
9 Beamforms the arriving signal at the receiving antenna.
10 Match-filters the beamformed signal and find its peak value.

Transmit 100 pulses of the waveform. Transmit one pulse every 100 milliseconds.
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t = 0;
Npulse = 100;
dt = 1;

Create storage for later plotting.

azes1 = zeros(Npulse,1);
elevs1 = zeros(Npulse,1);
azes2 = zeros(Npulse,1);
elevs2 = zeros(Npulse,1);
rxsig = zeros(Npulse,1);

Enter the simulation loop and generate the transmitted waveform.

for k = 1:Npulse

    t = t + dt;
    wav = waveform();

Update the positions of the radars and targets. All positions and velocities are defined
with respect to the global coordinate system. Because the
OrientationAxesOutputPort property of the target System object™ is set to true,
you can obtain the instantaneous local target axes, tgtAx1, from the target method.
These axes are needed to compute the target RCS. The array local axes are fixed so you
do not need to update them.

    [txradarPos,txradarVel] = txplatform(dt);
    [rxradarPos,rxradarVel] = rxplatform(dt);
    [tgtPos,tgtVel,tgtAx1] = tgtplatform(dt);

Compute the instantaneous range and direction of the target from the transmitting radar.
The strength of the transmitted wave depends upon the array gain pattern. This pattern is
a function of direction angles with respect to the local radar axes. You can compute the
direction of the target with respect to the transmitter local axes using the rangeangle
function with an optional argument that specifies the local radar axes, txradarAx.
(Without this additional argument, rangeangle returns the azimuth and elevation angles
with respect to the global coordinate system).

    [~,tgtang_tlcs] = rangeangle(tgtPos,txradarPos,txradarAx);

An alternative way to compute the direction angles is to first compute them in the global
coordinate system and then convert them using the global2localcoord function.
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Create the transmitted waveform. The transmitted waveform is an amplified version of
the generated waveform.

    txwaveform = transmitter(wav);

Radiate the signal in the instantaneous target direction. Recall that the radiator is not
steered in this direction but in an angle defined by the steering vector, txangsteer. The
steering angle is chosen because the target passes through this direction during its
motion. A plot will let us see the improvement in the response as the target moves into
the main lobe of the radar.

    txangsteer = [23.1203;-0.5357];
    txangsteer = [10;-.07];

    sv1 = steervec(fc,txangsteer);
    wavrad = radiator(txwaveform,tgtang_tlcs,conj(sv1));

Propagate the signal from the transmitting radar to the target. Propagation coordinates
are in the global coordinate system.

    wavprop1 = channel1(wavrad,txradarPos,tgtPos,txradarVel,tgtVel);

Reflect the waveform from target back to the receiving radar array. Use the simple angle-
dependent RCS model defined previously. Inputs to the rcs-model are azimuth and
elevation of the incoming and reflected rays with respect to the local target coordinate
system.

    [~,txang_tgtlcs] = rangeangle(txradarPos,tgtPos,tgtAx1);
    [~,rxang_tgtlcs] = rangeangle(rxradarPos,tgtPos,tgtAx1);
    rcs = rcsval(txang_tgtlcs(1),txang_tgtlcs(2),rxang_tgtlcs(1),rxang_tgtlcs(2));
    wavreflect = target(wavprop1,rcs);
    ns = size(wavreflect,1);
    tm = [0:ns-1]/fs*1e6;

Propagate the signal from the target to the receiving radar. As before, all coordinates for
signal propagation are expressed in the global coordinate system.

    wavprop2 = channel2(wavreflect,tgtPos,rxradarPos,tgtVel,rxradarVel);

Compute the response of the receiving antenna array in the direction from which the
radiation is coming. First, use the rangeangle function to compute the direction of the
target with respect to the receiving array local axes, by specifying the receiver local
coordinate system, rxradarAx.
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    [tgtrange_rlcs,tgtang_rlcs] = rangeangle(tgtPos,rxradarPos,rxradarAx);

Store the ranges and direction angles for later plotting.

    azes1(k) = tgtang_tlcs(1);
    elevs1(k) = tgtang_tlcs(2);
    azes2(k) = tgtang_rlcs(1);
    elevs2(k) = tgtang_rlcs(2);

Simulate an incoming plane wave at each element from the current direction of the target
calculated in the receiver local coordinate system.

    wavcoll = collectPlaneWave(rxarray,wavprop2,tgtang_rlcs,fc);

Beamform the arriving wave. In this scenario, the receiver beamformer points in the
direction, rxangsteer, specified by the Direction property of the
phased.PhaseShiftBeamformer System object. When the target actually lies in that
direction, the response of the array maximized.

    wavbf = beamformer(wavcoll);

Perform match filtering of the beamformed received wave and then find and store the
maximum value of each pulse for display. This value will be plotted after the simulation
loop ends.

    y = filter(wavbf);
    rxsig(k) = max(abs(y));

end

Plot the target track in azimuth and elevation with respect to the transmitter local
coordinates. The red circle denotes the direction toward which the transmitter array
points.

plot(azes1,elevs1,'.b')
grid
xlabel('Azimuth (degrees)')
ylabel('Elevation (degrees)')
title('Target Track in Transmitter Local Coordinates')
hold on
plot(txangsteer(1),txangsteer(2),'or')
hold off
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Plot the target track in azimuth and elevation with respect to the receiver local
coordinates. The red circle denotes the direction toward which the beamformer points.

plot(azes2,elevs2,'.b')
axis([-5.0,25.0,-5.0,5])
grid
xlabel('Azimuth (degrees)')
ylabel('Elevation (degrees)')
title('Target Track in Receiver Local Coordinates')
hold on
plot(rxangsteer(1),rxangsteer(2),'or')
hold off
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Plot the returned signal amplitude vs azimuth in the receiver local coordinates. The value
of the amplitude depends on several factors.

plot(azes2,rxsig,'.')
grid
xlabel('Azimuth (degrees)')
ylabel('Amplitude')
title('Amplitude vs Azimuth in Receiver Local Coordinates')
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Motion Modeling in Phased Array Systems
In this section...
“Support for Motion Modeling” on page 10-52
“Platform Motion with Constant Velocity” on page 10-53
“Platform Motion with Nonconstant Velocity” on page 10-54
“Track Range and Angle Changes Between Platforms” on page 10-55

Support for Motion Modeling
A critical component in phased array system applications is the ability to model motion in
space. Such modeling includes the motion of arrays, targets, and sources of interference.
For convenience, you can ignore the distinction between these objects and collectively
model the motion of a platform.

Extended bodies can undergo both translational and rotational motion in space. Phased
Array System Toolbox software supports modeling of translational motion.

Modeling translational platform motion requires the specification of a position and
velocity vector. Specification of a position vector implies a coordinate system. In the
Phased Array System Toolbox, platform position and velocity are specified in a “Global
Coordinate System” on page 10-21. You can think of the platform position as the
displacement vector from the global origin or as the coordinates of a point with respect to
the global origin.

Let r0 denote the position vector at time 0 and v denote the velocity vector. The position
vector of a platform as a function of time, r(t), is:

r t r vt( ) = +0

The following figure depicts the vector interpretation of translational motion.
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When the platform represents a sensor element or array, it is important to know the
orientation of the element or array local coordinate axes. For example, the orientation of
the local coordinate axes is necessary to extract angle information from incident
waveforms. See “Global and Local Coordinate Systems” on page 10-21 for a description of
global and local coordinate systems in the software. Finally, for platforms with varying
velocity, you must be able to update the velocity vector over time.

You can model platform position, velocity, and local axes orientation with the
phased.Platform object.

Platform Motion with Constant Velocity
Beginning with a simple example, model the motion of a platform over ten time steps. To
determine the time step, assume that you have a pulse transmitter with a pulse repetition
frequency (PRF) of 1 kilohertz. Accordingly, the time interval between each pulse is 1
millisecond. Set the time step equal to pulse repetition interval.

PRF = 1e3;
Tstep = 1/PRF;
Nsteps = 10;

Next, construct a platform object specifying the platform initial position and velocity.
Assume that the initial position of the platform is 100 meters from the origin at (60,80,0).
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Assume the speed is approximately 30 meters per second (m/s) with the constant velocity
vector given by (15,25.98,0) .

platform = phased.Platform('InitialPosition',[60;80;0],'Velocity',[15;25.98;0]);

The orientation of the local coordinate axes of the platform is the value of the
InitialOrientationAxes property. You can view the value of this property by entering
hplat.InitialOrientationAxes at the MATLAB™ command prompt. Because the
InitialOrientationAxes property is not specified in the construction of the
phased.Platform System object™, the property is assigned its default value of [1 0
0;0 1 0;0 0 1]. Use the step method to simulate the translational motion of the
platform.

initialPos = platform.InitialPosition;
for k = 1:Nsteps
    pos = platform(Tstep);
end
finalPos = pos + platform.Velocity*Tstep;
distTravel = norm(finalPos - initialPos)

distTravel = 0.3000

The step method returns the current position of the platform and then updates the
platform position based on the time step and velocity. Equivalently, the first time you
invoke the step method, the output is the position of the platform at t = 0.

Recall that the platform is moving with a constant velocity of approximately 30 m/s. The
total time elapsed is 0.01 seconds. Invoking the step method returns the current position
of the platform and then updates that position. Accordingly, you expect the final position
to differ from the initial position by 0.30 meters. Confirm this difference by examining the
value of distTravel.

Platform Motion with Nonconstant Velocity
Most platforms in phased array applications do not move with constant velocity. If the
time interval described by the number of time steps is small with respect to the platform
speed, you can often approximate the velocity as constant. However, there are situations
where you must update the platform velocity over time. You can do so with the
phased.Platform System object� because the Velocity property is tunable.

This example models a target initially at rest. The initial velocity vector is (0,0,0) . Assume
the time step is 1 millisecond. After 500 milliseconds, the platform begins to move with a
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speed of approximately 10 m/s. The velocity vector is (7.07,7.07,0). The platform
continues at this velocity for an additional 500 milliseconds.

Tstep = 1e-3;
Nsteps = 1/Tstep;
platform = phased.Platform('InitialPosition',[100;100;0]);
for k = 1:Nsteps/2
    [tgtpos,tgtvel] = platform(Tstep);
end
platform.Velocity = [7.07; 7.07; 0];
for k = Nsteps/2+1:Nsteps
    [tgtpos,tgtvel] = platform(Tstep);
end

Track Range and Angle Changes Between Platforms
This example uses the phased.Platform System object™ to model the change in range
between a stationary radar and a moving target. The radar is located at (1000,1000,0)
and has a velocity of (0,0,0) . The target has an initial position of (5000,8000,0 ) and
moves with a constant velocity of (?30,?45,0). The pulse repetition frequency (PRF) is 1
kHz. Assume that the radar emits ten pulses.

PRF = 1e3;
Tstep = 1/PRF;
radar = phased.Platform('InitialPosition',[1000;1000;0]);
target = phased.Platform('InitialPosition',[5000;8000;0],...
    'Velocity',[-30;-45;0]);

Calculate initial target range and angle.

[initRng, initAng] = rangeangle(target.InitialPosition,radar.InitialPosition);

Calculate relative radial speed.

v = radialspeed(target.InitialPosition,target.Velocity,...
    radar.InitialPosition);

Simulate target motion.

Npulses = 10;
for num = 1:Npulses
    tgtpos = target(Tstep);
end
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Compute last target position.

tgtpos = tgtpos + target.Velocity*Tstep;

Calculate final target range and angle.

[finalRng,finalAng] = rangeangle(tgtpos,radar.InitialPosition);
deltaRng = finalRng - initRng

deltaRng = -0.5396

The constant velocity of the target is approximately 54 m/s. The total time elapsed is 0.01
seconds. The range between the target and the radar should decrease by approximately
54 centimeters. Compare the initial range of the target, initRng, to the final range,
finalRng, to confirm that this decrease occurs.

See Also

Related Examples
• “Introduction to Space-Time Adaptive Processing”
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Model Motion of Circling Airplane
Start with an airplane moving at 150 kmph in a circle of radius 10 km and descending at
the same time at a rate of 20 m/sec. Compute the motion of the airplane from its
instantaneous acceleration as an argument to the step method. Set the initial orientation
of the platform to the identity, coinciding with the global coordinate system.

Set up the scenario

Specify the initial position and velocity of the airplane. The airplane has a ground range of
10 km and an altitude of 20 km.

range = 10000;
alt = 20000;
initPos = [cosd(60)*range;sind(60)*range;alt];
originPos = [1000,1000,0]';
originVel = [0,0,0]';
vs = 150.0;
phi = atan2d(initPos(2)-originPos(2),initPos(1)-originPos(1));
phi1 = phi + 90;
vx = vs*cosd(phi1);
vy = vs*sind(phi1);
initVel = [vx,vy,-20]';
platform = phased.Platform('MotionModel','Acceleration',...
    'AccelerationSource','Input port','InitialPosition',initPos,...
    'InitialVelocity',initVel,'OrientationAxesOutputPort',true,...
    'InitialOrientationAxes',eye(3));
relPos = initPos - originPos;
relVel = initVel - originVel;
rel2Pos = [relPos(1),relPos(2),0]';
rel2Vel = [relVel(1),relVel(2),0]';
r = sqrt(rel2Pos'*rel2Pos);
accelmag = vs^2/r;
unitvec = rel2Pos/r;
accel = -accelmag*unitvec;
T = 0.5;
N = 1000;

Compute the trajectory

Specify the acceleration of an object moving in a circle in the x-y plane. The acceleration
is v^2/r towards the origin.
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posmat = zeros(3,N);
r1 = zeros(N);
v = zeros(N);
for n = 1:N
    [pos,vel,oax] = platform(T,accel);
    posmat(:,n) = pos;
    vel2 = vel(1)^2 + vel(2)^2;
    v(n) = sqrt(vel2);
    relPos = pos - originPos;
    rel2Pos = [relPos(1),relPos(2),0]';
    r = sqrt(rel2Pos'*rel2Pos);
    r1(n) = r;
    accelmag = vel2/r;
    accelmag = vs^2/r;
    unitvec = rel2Pos/r;
    accel = -accelmag*unitvec;
end

Display the final orientation of the local coordinate system.

disp(oax)

   -0.3658   -0.9307   -0.0001
    0.9307   -0.3658   -0.0010
    0.0009   -0.0005    1.0000

Plot the trajectory and the origin position

posmat = posmat/1000;
figure(1)
plot3(posmat(1,:),posmat(2,:),posmat(3,:),'b.')
hold on
plot3(originPos(1)/1000,originPos(2)/1000,originPos(3)/1000,'ro')
xlabel('X (km)')
ylabel('Y (km)')
zlabel('Z (km)')
grid
hold off
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Visualize Multiplatform Scenario
This example shows how to create and display a multiplatform scenario containing a
ground-based stationary radar, a turning airplane, a constant-velocity airplane, and a
moving ground vehicle. The turning airplane follows a parabolic flight path while
descending at a rate of 20 m/s.

Specify the scenario refresh rate at 0.5 Hz. For 150 steps, the time duration of the
scenario is 300 s.

updateRate = 0.5;
N = 150;

Set up the turning airplane using the Acceleration model of the phased.Platform
System object?. Specify the initial position of the airplane by range and azimuth from the
ground-based radar and its elevation. The airplane is 10 km from the radar at 60?
azimuth and has an altitude of 6 km. The airplane is accelerating at 10  in the
negative x-direction.

airplane1range = 10.0e3;
airplane1Azimuth = 60.0;
airplane1alt = 6.0e3;
airplane1Pos0 = [cosd(airplane1Azimuth)*airplane1range;...
    sind(airplane1Azimuth)*airplane1range;airplane1alt];
airplane1Vel0 = [400.0;-100.0;-20];
airplane1Accel = [-10.0;0.0;0.0];
airplane1platform = phased.Platform('MotionModel','Acceleration',...
    'AccelerationSource','Input port','InitialPosition',airplane1Pos0,...
    'InitialVelocity',airplane1Vel0,'OrientationAxesOutputPort',true,...
    'InitialOrientationAxes',eye(3));

Set up the stationary ground radar at the origin of the global coordinate system. To
simulate a rotating radar, change the ground radar beam steering angle in the processing
loop.

groundRadarPos = [0,0,0]';
groundRadarVel = [0,0,0]';
groundradarplatform = phased.Platform('MotionModel','Velocity',...
    'InitialPosition',groundRadarPos,'Velocity',groundRadarVel,...
    'InitialOrientationAxes',eye(3));

Set up the ground vehicle to move at a constant velocity.
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groundVehiclePos = [5e3,2e3,0]';
groundVehicleVel = [50,50,0]';
groundvehicleplatform = phased.Platform('MotionModel','Velocity',...
    'InitialPosition',groundVehiclePos,'Velocity',groundVehicleVel,...
    'InitialOrientationAxes',eye(3));

Set up the second airplane to also move at constant velocity.

airplane2Pos = [8.5e3,1e3,6000]';
airplane2Vel = [-300,100,20]';
airplane2platform = phased.Platform('MotionModel','Velocity',...
    'InitialPosition',airplane2Pos,'Velocity',airplane2Vel,...
    'InitialOrientationAxes',eye(3));

Set up the scenario viewer. Specify the radar as having a beam range of 8 km, a vertical
beam width of 30?, and a horizontal beam width of 2?. Annotate the tracks with position,
speed, altitude, and range.

BeamSteering = [0;50];
viewer = phased.ScenarioViewer('BeamRange',8.0e3,'BeamWidth',[2;30],'UpdateRate',updateRate,...
    'PlatformNames',{'Ground Radar','Turning Airplane','Vehicle','Airplane 2'},'ShowPosition',true,...
    'ShowSpeed',true,'ShowAltitude',true,'ShowLegend',true,'ShowRange',true,...
    'Title','Multiplatform Scenario','BeamSteering',BeamSteering);

Step through the display processing loop, updating radar and target positions. Rotate the
ground-based radar steering angle by four degrees at each step.

for n = 1:N
    [groundRadarPos,groundRadarVel] = groundradarplatform(updateRate);
    [airplane1Pos,airplane1Vel,airplane1Axes] = airplane1platform(updateRate,airplane1Accel);
    [vehiclePos,vehicleVel] = groundvehicleplatform(updateRate);
    [airplane2Pos,airplane2Vel] = airplane2platform(updateRate);
    viewer(groundRadarPos,groundRadarVel,[airplane1Pos,vehiclePos,airplane2Pos],...
        [airplane1Vel,vehicleVel,airplane2Vel]);
    BeamSteering = viewer.BeamSteering(1);
    BeamSteering = mod(BeamSteering + 4,360.0);
    if BeamSteering > 180.0
        BeamSteering = BeamSteering - 360.0;
    end
    viewer.BeamSteering(1) = BeamSteering;
    pause(0.2);
end
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Doppler Shift and Pulse-Doppler Processing
In this section...
“Support for Pulse-Doppler Processing” on page 10-63
“Convert Speed to Doppler Shift” on page 10-63
“Convert Doppler Shift to Speed” on page 10-64
“Pulse-Doppler Processing of Slow-Time Data” on page 10-64
“Range and Speed using Pulse-Doppler Processing” on page 10-65

Support for Pulse-Doppler Processing
Relative motion between a signal source and a receiver produces shifts in the frequency
of the received waveform. Measuring this Doppler shift provides an estimate of the
relative radial velocity of a moving target.

For a narrowband signal propagating at the speed of light, the one-way Doppler shift in
hertz is:

Δf = ± v
λ

where v is the relative radial speed of the target with respect to the transmitter. For a
target approaching the receiver, the Doppler shift is positive. For a target receding from
the transmitter, the Doppler shift is negative.

You can use speed2dop to convert the relative radial speed to the Doppler shift in hertz.
You can use dop2speed to determine the radial speed of a target relative to a receiver
based on the observed Doppler shift.

Convert Speed to Doppler Shift
Assume a target approaches a stationary receiver with a radial speed of 23.0 m/s. The
target reflects a narrowband electromagnetic wave with a frequency of 1 GHz. Estimate
the one-way Doppler shift.

freq = 1e9;
v = 23.0;
lambda = physconst('LightSpeed')/freq;
dopplershift = speed2dop(v,lambda)
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dopplershift = 76.7197

The one-way Doppler shift is approximately 76.72 Hz. Because the target approaches the
receiver, the Doppler shift is positive.

Convert Doppler Shift to Speed
Assume you observe a Doppler shift of 400.0 Hz for a waveform with a frequency of 9
GHz. Determine the radial velocity of the target.

freq = 9e9;
df = 400.0;
lambda = physconst('LightSpeed')/freq;
speed = dop2speed(df,lambda)

speed = 13.3241

The target speed is approximately 13.32 m/s.

Pulse-Doppler Processing of Slow-Time Data
A common technique for estimating the radial velocity of a moving target is pulse-Doppler
processing. In pulse-Doppler processing, you take the discrete Fourier transform (DFT) of
the slow-time data from a range bin containing a target. If the pulse repetition frequency
is sufficiently high with respect to the speed of the target, the target is located in the
same range bin for a number of pulses. Accordingly, the slow-time data corresponding to
that range bin contain information about the Doppler shift induced by the moving target,
which you can use to estimate the target’s radial velocity.

The slow-time data are sampled at the pulse repetition frequency (PRF) and therefore the
DFT of the slow-time data for a given range bin yields an estimate of the Doppler
spectrum from [-PRF/2, PRF/2] Hz. Because the slow-time data are complex-valued, the
DFT magnitudes are not necessarily an even function of the Doppler frequency. This
removes the ambiguity between a Doppler shift corresponding to an approaching
(positive Doppler shift), or receding (negative Doppler shift) target. The resolution in the
Doppler domain is PRF/N where N is the number of slow-time samples. You can pad the
spectral estimate of the slow-time data with zeros to interpolate the DFT frequency grid
and improve peak detection, but this does not improve the Doppler resolution.

The typical workflow in pulse-Doppler processing involves:
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• Detecting a target in the range dimension (fast-time samples). This gives the range bin
to analyze in the slow-time dimension.

• Computing the DFT of the slow-time samples corresponding to the specified range bin.
Identify significant peaks in the magnitude spectrum and convert the corresponding
Doppler frequencies to speeds.

Range and Speed using Pulse-Doppler Processing
This example illustrate pulse-Doppler processing using Phased Array System Toolbox™.
Assume that you have a stationary monostatic radar located at the global origin, (0,0,0).
The radar consists of a single isotropic antenna element. There is a target with a
nonfluctuating radar cross section (RCS) of 1 square meter initially located at
(1000,1000,0) m and moving at a constant velocity of (-100,-100,0) m/s. The antenna
operates at a frequency of 1 GHz and illuminates the target with 10 rectangular pulses at
a PRF of 10 kHz.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Define the System objects needed for this example and set their properties. Seed the
random number generator for the phased.ReceiverPreamp System object™ to produce
repeatable results.

waveform = phased.RectangularWaveform('SampleRate',5e6,...
    'PulseWidth',6e-7,'OutputFormat','Pulses',...
    'NumPulses',1,'PRF',1e4);
target = phased.RadarTarget('Model','Nonfluctuating',...
    'MeanRCS',1,'OperatingFrequency',1e9);
targetpos = phased.Platform('InitialPosition',[1000; 1000; 0],...
    'Velocity',[-100; -100; 0]);
antenna = phased.IsotropicAntennaElement(...
    'FrequencyRange',[5e8 5e9]);
transmitter = phased.Transmitter('PeakPower',5e3,'Gain',20,...
'InUseOutputPort',true);
transpos = phased.Platform('InitialPosition',[0;0;0],...
    'Velocity',[0;0;0]);
radiator = phased.Radiator('OperatingFrequency',1e9,'Sensor',antenna);
collector = phased.Collector('OperatingFrequency',1e9,'Sensor',antenna);
channel = phased.FreeSpace('SampleRate',waveform.SampleRate,...
    'OperatingFrequency',1e9,'TwoWayPropagation',false);
receiver = phased.ReceiverPreamp('Gain',0,'LossFactor',0,...
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    'SampleRate',5e6,'NoiseFigure',5,...
    'EnableInputPort',true,'SeedSource','Property','Seed',1e3);

This loop transmits ten successive rectangular pulses toward the target, reflects the
pulses off the target, collects the reflected pulses at the receiver, and updates the target
position with the specified constant velocity.

NumPulses = 10;
sig = waveform(); % get waveform 
transpos = transpos.InitialPosition; % get transmitter position
rxsig = zeros(length(sig),NumPulses);
% transmit and receive ten pulses
for n = 1:NumPulses
    % update target position
    [tgtpos,tgtvel] = targetpos(1/waveform.PRF);
    [tgtrng,tgtang] = rangeangle(tgtpos,transpos);
    tpos(n) = tgtrng;
    [txsig,txstatus] = transmitter(sig); % transmit waveform
    txsig = radiator(txsig,tgtang); % radiate waveform toward target
    txsig = channel(txsig,transpos,tgtpos,[0;0;0],tgtvel); % propagate waveform to target
    txsig = target(txsig); % reflect the signal
    % propagate waveform from the target to the transmiter
    txsig = channel(txsig,tgtpos,transpos,tgtvel,[0;0;0]);
    txsig = collector(txsig,tgtang); % collect signal
    rxsig(:,n) = receiver(txsig,~txstatus); % receive the signal
end

The matrix rxsig contains the echo data in a 500-by-10 matrix where the row dimension
contains the fast-time samples and the column dimension contains the slow-time samples.
In other words, each row in the matrix contains the slow-time samples from a specific
range bin.

Construct a linearly-spaced grid corresponding to the range bins from the fast-time
samples. The range bins extend from 0 meters to the maximum unambiguous range.

prf = waveform.PRF;
fs = waveform.SampleRate;
fasttime = unigrid(0,1/fs,1/prf,'[)');
rangebins = (physconst('LightSpeed')*fasttime)/2;

Next, detect the range bins which contain targets. In this simple scenario, no matched
filtering or time-varying gain compensation is utilized.
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In this example, set the false-alarm probability to 10−9. Use noncoherent integration of
the ten rectangular pulses and determine the corresponding threshold for detection in
white Gaussian noise. Because this scenario contains only one target, take the largest
peak above the threshold. Display the estimated target range.

probfa = 1e-9;
NoiseBandwidth = 5e6/2;
npower = noisepow(NoiseBandwidth,...
    receiver.NoiseFigure,receiver.ReferenceTemperature);
thresh = npwgnthresh(probfa,NumPulses,'noncoherent');
thresh = sqrt(npower*db2pow(thresh));
[pks,range_detect] = findpeaks(pulsint(rxsig,'noncoherent'),...
    'MinPeakHeight',thresh,'SortStr','descend');
range_estimate = rangebins(range_detect(1));

Extract the slow-time samples corresponding to the range bin containing the detected
target. Compute the power spectral density estimate of the slow-time samples using
periodogram function and find the peak frequency. Convert the peak Doppler frequency
to speed using the dop2speed function. A positive Doppler shift indicates that the target
is approaching the transmitter. A negative Doppler shift indicates that the target is
moving away from the transmitter.

ts = rxsig(range_detect(1),:).';
[Pxx,F] = periodogram(ts,[],256,prf,'centered');
plot(F,10*log10(Pxx))
grid
xlabel('Frequency (kHz)')
ylabel('Power (dB)')
title('Periodogram Spectrum Estimate')
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[Y,I] = max(Pxx);
lambda = physconst('LightSpeed')/1e9;
tgtspeed = dop2speed(F(I)/2,lambda);
fprintf('Estimated range of the target is %4.2f meters.\n',...
    range_estimate)

Estimated range of the target is 1439.00 meters.

fprintf('Estimated target speed is %3.1f m/sec.\n',tgtspeed)

Estimated target speed is 140.5 m/sec.

if F(I)>0
    fprintf('The target is approaching the radar.\n')
else
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    fprintf('The target is moving away from the radar.\n')
end

The target is approaching the radar.

The true radial speed of the target is detected within the Doppler resolution and the
range of the target is detected within the range resolution of the radar.

See Also

Related Examples
• “Doppler Estimation”
• “Scan Radar Using a Uniform Rectangular Array”
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Polarized Fields
In this section...
“Introduction to Polarization” on page 11-2
“Linear and Circular Polarization” on page 11-4
“Elliptic Polarization” on page 11-9
“Linear and Circular Polarization Bases” on page 11-13
“Sources of Polarized Fields” on page 11-17
“Scattering Cross-Section Matrix” on page 11-24
“Polarization Loss Due to Field and Receiver Mismatch” on page 11-28
“Model Radar Transmitting Polarized Radiation” on page 11-30

Introduction to Polarization
You can use the Phased Array System Toolbox software to simulate radar systems that
transmit, propagate, reflect, and receive polarized electromagnetic fields. By including
this capability, the toolbox can realistically model the interaction of radar waves with
targets and the environment.

It is a basic property of plane waves in free-space that the directions of the electric and
magnetic field vectors are orthogonal to their direction of propagation. The direction of
propagation of an electromagnetic wave is determined by the Poynting vector

S = E × H

In this equation, E represents the electric field and H represents the magnetic field. The
quantity, S, represents the magnitude and direction of the wave’s energy flux. Maxwell’s
equations, when applied to plane waves, produce the result that the electric and magnetic
fields are related by

E = − Zs × H

H = 1
Zs × E

The vector s, the unit vector in the S direction, represents the direction of propagation of
the wave. The quantity, Z, is the wave impedanceand is a function of the electric
permittivity and the magnetic permeability of medium in which the wave travels.
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After manipulating the two equations, you can see that the electric and magnetic fields
are orthogonal to the direction of propagation

E · s = H · s = 0.

This last result proves that there are really only two independent components of the
electric field, labeled Ex and Ey. Similarly, the magnetic field can be expressed in terms of
two independent components. Because of the orthogonality of the fields, the electric field
can be represented in terms of two unit vectors orthogonal to the direction of
propagation.

E = Exex + Eyey

The unit vectors together with the unit vector in direction of propagation

ex, ey, s .

form a right-handed orthonormal triad. Later, these vectors and the coordinates they
define will be related to the coordinates of a specific radar system. In radar systems, it is
common to use the subscripts, H and V, denoting the horizontal and vertical components,
instead of x and y. Because the electric and magnetic fields are determined by each other,
only the properties of the electric field need be consider.

For a radar system, the electric and magnetic field are actually spherical waves, rather
than plane waves. However, in practice, these fields are usually measured in the far field
region or radiation zone of the radar source and are approximately plane waves. In the
far field, the waves are called quasi-plane waves. A point lies in the far field if its distance,
R, from the source satisfies R ≫D2/λ where D is a typical dimension of the source,
whether it is a single antenna or an array of antennas.

Polarization applies to purely sinusoidal signals. The most general expression for a
sinusoidal plane-wave has the form

E = Ex0cos ωt − k · x + ϕx ex + Ey0cos ωt − k · x + ϕy ey = Exex + Eyey

The quantities Ex0 and Ey0 are the real-valued, non-negative, amplitudes of the
components of the electric field and ϕx and ϕy are field’s phases. This expression is the
most general one used for a polarized wave. An electromagnetic wave is polarized if the
ratio of the amplitudes of its components and phase difference between it components do
not change with time. The definition of polarization can be broadened to include
narrowband signals, for which the bandwidth is small compared to the center or carrier
frequency of the signal. The amplitude ratio and phases difference vary slowly with time
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when compared to the period of the wave and may be thought of as constant over many
oscillations.

You can usually suppress the spatial dependence of the field and write the electric field
vector as

E = Ex0cos ωt + ϕx ex + Ey0cos ωt + ϕy ey = Exex + Eyey

Linear and Circular Polarization
The preceding equation for a polarized plane wave shows that the tip of the two-
dimensional electric field vector moves along a path which lies in a plane orthogonal to
field’s direction of propagation. The shape of the path depends upon the magnitudes and
phases of the components. For example, if ϕx = ϕy, you can remove the time dependence
and write

Ey =
Ey0
Ex0

Ex

This equation represents a straight line through the origin with positive slope. Conversely,
suppose ϕx = ϕy + π. Then, the tip of the electric field vector follows a straight line
through the origin with negative slope

Ey = −
Ey0
Ex0

Ex

These two polarization cases are named linear polarized because the field always
oscillates along a straight line in the orthogonal plane. If Ex0= 0, the field is vertically
polarized, and if Ey0 = 0 the field is horizontally polarized.

A different case occurs when the amplitudes are the same, Ex = Ey, but the phases differ
by ±π/2

Ex = E0cos(ωt + ϕ)
Ey = E0cos(ωt + ϕ ± π/2) = ∓ E0sin(ωt + ϕ)

By squaring both sides, you can show that the tip of the electric field vector obeys the
equation of a circle

Ex
2 + Ey

2 = E0
2
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While this equation gives the path the vector takes, it does not tell you in what direction
the electric field vector travels around the circle. Does it rotate clockwise or
counterclockwise? The rotation direction depends upon the sign of π/2 in the phase. You
can see this dependency by examining the motion of the tip of the vector field. Assume
the common phase angle, ϕ = 0. This assumption is permissible because the common
phase only determines starting position of the vector and does not change the shape of its
path. First, look at the +π/2 case for a wave travelling along the s-direction (out of the
page). At t=0, the vector points along the x-axis. One quarter period later, the vector
points along the negative y-axis. After another quarter period, it points along the negative
x-axis.

x

y

E (t = 0)

Left hand circular polarization. The direction of

the electric vector at 0, 1/4, 1/2, and 3/4 periods, T.

The z-axis points out of the page.

E (t = T/4)

E (t = T/2)

E (t = 3T/4)

MATLAB uses the IEEE convention to assign the names right-handed or left-handed
polarization to the direction of rotation of the electric vector, rather than clockwise or
counterclockwise. When using this convention, left or right handedness is determined by
pointing your left or right thumb along the direction of propagation of the wave. Then,
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align the curve of your fingers to the direction of rotation of the field at a given point in
space. If the rotation follows the curve of your left hand, then the wave is left-handed
polarized. If the rotation follows the curve of your right hand, then the wave is right-
handed polarized. In the preceding scenario, the field is left-handed circularly polarized
(LHCP). The phase difference –π/2 corresponds to right-handed circularly polarized wave
(RHCP). The following figure provides a three-dimensional view of what a LHCP
electromagnetic wave looks like as it moves in the s-direction.

When the terms clockwise or counterclockwise are used they depend upon how you look
at the wave. If you look along the direction of propagation, then the clockwise direction
corresponds to right-handed polarization and counterclockwise corresponds to left-
handed polarization. If you look toward where the wave is coming from, then clockwise
corresponds to left-handed polarization and counterclockwise corresponds to right-
handed polarization.
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Left-Handed Circular Polarization

The figure below shows the appearance of linear and circularly polarized fields as they
move towards you along the s-direction.
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Linear and Circular Polarization
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Elliptic Polarization
Besides the linear and circular states of polarization, a third type of polarization is elliptic
polarization. Elliptic polarization includes linear and circular polarization as special cases.

As with linear or circular polarization, you can remove the time dependence to obtain the
locus of points that the tip of the electric field vector travels

Ex
Ex0

2
+

Ey
Ey0

2
− 2

Ex
Ex0

Ey
Ey0

cosϕ = sin2ϕ

In this case, φ = φy – φx. This equation represents a tilted two-dimensional ellipse. Its size
and shape are determined by the component amplitudes and phase difference. The
presence of the cross term indicates that the ellipse is tilted. The equation does not, just
as in the circularly polarized case, provide any information about the rotation direction.
For example, the following figure shows the instantaneous state of the electric field but
does not indicate the direction in which the field is rotating.

The size and shape of a two-dimensional ellipse can be defined by three parameters.
These parameters are the lengths of its two axes, the semi-major axis, a, and semi-minor
axis, b, and a tilt angle, τ. The following figure illustrates the three parameters of a tilted
ellipse. You can derive them from the two electric field amplitudes and phase difference.
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E

Ey0

Ex0

Polarization Ellipse

Polarization can best be understood in terms of complex signals. The complex
representation of a polarized wave has the form

E = Ex0eiϕxeiωtex + Ey0eiϕyeiωtey = Ex0eiϕxex + Ey0eiϕyey eiωt

Define the complex polarization ratio as the ratio of the complex amplitudes

ρ =
Ey0
Ex0

ei ϕy − ϕx =
Ey0
Ex0

eiϕ

where ϕ = ϕy – ϕx.

11 Using Polarization

11-10



It is useful to introduce the polarization vector. For the complex polarized electric field
above, the polarization vector, P, is obtained by normalizing the electric field

P =
Ex0
Em

ex +
Ey0
Em

ei ϕy − ϕx ey =
Ex0
Em

ex +
Ey0
Em

eiϕey

where Em
2 = Ex0

2 + Ey0
2 is the magnitude of the wave.

The overall size of the polarization ellipse is not important because that can vary as the
wave travels through space, especially through geometric attenuation. What is important
is the shape of the ellipse. Thus, the significant ellipse parameters are the ratio of its axis
dimensions, a/b, called the axial ratio, and the tilt angle, τ. Both of these quantities can be
determined from the ratio of the component amplitudes and the phase difference, or,
equivalently, from the polarization ratio. Another quantity, equivalent to the axial ratio, is
the ellipticity angle, ε.

In the Phased Array System Toolbox software, you can use the polratio function to
convert the complex amplitudes fv=[Ey;Ex] to the polarization ratio.

p = polratio(fv)

Tilt Angle

The tilt angle is defined as the positive (counterclockwise) rotation angle from the x-axis
to the semi-major axis of the ellipse. Because of the symmetry properties of the ellipse,
the tilt angle, τ, needs only be defined in the range –π/2 ≤ τ ≤ π/2. You can find the tilt
angle by determining the rotated coordinate system in which the semi-major and semi-
minor axes align with the rotated coordinate axes. Then, the ellipse equation has no
cross-terms. The solution takes the form

tan2τ =
2Ex0Ey0

Ex0
2 − Ey0

2 cosϕ

where φ = φy – φx. Notice that you can rewrite this equation strictly in terms of the
amplitude ratio and the phase difference.

Axial Ratio and Ellipticity Angle

After solving for the tilt angle, you can determine the semi-major and semi-minor axis
lengths. Conceptually, you rotate the ellipse clockwise by the tilt angle and measure the
lengths of the intersections of the ellipse with the x- and y-axes. The point of intersection
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with the larger value is the semi-major axis, a, and the one with the smaller value is the
semi-minor axis, b.

The axial ratio is defined as AR = a/b and, by construction, is always greater than or equal
to one. The ellipticity angle is defined by

tanε = ∓ b
a

and always lies in the range–π/4 ≤ τ ≤ π/4.

If you define the auxiliary angle, α, by

tanα =
Ey0
Ex0

then, the ellipticity angle is given by

sin2ε = sin2αsinϕ

Both the axial ratio and ellipticity angle are defined from the amplitude ratio and phase
difference and are independent of the overall magnitude of the field.

Rotation Sense

For elliptic polarization, just as with circular polarization, you need another parameter to
completely describe the ellipse. This parameter must provide the rotation sense or the
direction that the tip of the electric (or magnetic vector) moves in time. The rate of
change of the angle that the field vector makes with the x-axis is proportion to –sin φ
where φ is the phase difference. If sin φ is positive, the rate of change is negative,
indicating that the field has left-handed polarization. If sin φ is negative, the rate of
change is positive or right-handed polarization.

The function polellip lets you find the values of the parameters of the polarization
ellipse from either the field component vector fv=[Ey;Ex] or the polarization ratio, p.

fv=[Ey;Ex];
[tau,epsilon,ar,rs] = polellip(fv);
p = polratio(fv);
[tau,epsilon,ar,rs] = polellip(p);

The variables tau, epsilon, ar and rs represent the tilt angle, ellipticity angle, axial
ratio and rotation sense, respectively. Both syntaxes give the same result.
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Polarization Value Summary

This table summaries several different common polarization states and the values of the
amplitudes, phases, and polarization ratio that produce them:

Polarization Amplitudes Phases Polarization Ratio
Linear positive slope Any non-negative

real values for Ex, Ey.
φy = φx Any non-negative

real number
Linear negative slope Any non-negative

real values for Ex, Ey

φy = φx+ π Any negative real
number

Right-Handed
Circular

Ex=Ey φy= φx– π/2 –i

Left-Handed Circular Ex=Ey φy= φx + π/2 i
Right-Handed
Elliptical

Any non-negative
real values for Ex, Ey

sin (φy– φx) < 0 sin(arg ρ) < 0

Left-Handed
Elliptical

Any non-negative
real values for Ex, Ey

sin (φy– φx) >0 sin(arg ρ) > 0

Linear and Circular Polarization Bases
As shown earlier, you can express a polarized electric field as a linear combination of
basis vectors along the x and y directions. For example, the complex electric field vectors
for the right-handed circularly polarized (RHCP) wave and the left-handed circularly
polarized (LHCP) wave, take the form:

E = Re[E0(ex∓ iey)ei(ωt + ϕ)]

In this equation, the positive sign is for the LHCP field and the negative sign is for the
RHCP field. These two special combinations can be given a new name. Define a new basis
vector set, called the circular basis set

er = 1
2(ex− iey)

el = 1
2(ex + iey)
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You can express any polarized field in terms of the circular basis set instead of the linear
basis set. Conversely, you can also write the linear polarization basis in terms of the
circular polarization basis

ex = 1
2(er + el)

ey = 1
2i (er − el)

Any general elliptic field can be written as a combination of circular basis vectors

E = Elel + Erer

Jones Vector

The polarized field is orthogonal to the wave’s direction of propagation. Thus, the field
can be completely specified by the two complex components of the electric field vector in
the plane of polarization. The formulation of a polarized wave in terms of two-component
vectors is called the Jones vector formulation. The Jones vector formulation can be
expressed in either a linear basis or a circular basis or any basis. This table shows the
representation of common polarizations in a linear basis and circular basis.

Common Polarizations Jones Vector in Linear
Basis

Jones Vector in Circular
Basis

Vertical [0;1] 1/sqrt(2)*[-1;1]
Horizontal [1;0] 1/sqrt(2)*[1;1]
45° Linear 1/sqrt(2)*[1;1] 1/sqrt(2)*[1-1i;1+1i]
135° Linear 1/sqrt(2)*[1;-1] 1/sqrt(2)*[1+1i;1-1i]
Right Circular 1/sqrt(2)*[1;-1i] [0;1]
Left Circular 1/sqrt(2)*[1;1i] [1;0]

Stokes Parameters and the Poincaré Sphere

The polarization ellipse is an instantaneous representation of a polarized wave. However,
its parameters, the tilt angle and the ellipticity angle, are often not directly measurable,
particularly at very high frequencies such as light frequencies. However, you can
determine the polarization from measurable intensities of the polarized field.

The measurable intensities are the Stokes parameters, S0, S1, S2, and S3. The first Stokes
parameter, S0, describes the total intensity of the field. The second parameter, S1,
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describes the preponderance of linear horizontally polarized intensity over linear
vertically polarized intensity. The third parameter, S2, describes the preponderance of
linearly +45° polarized intensity over linearly 135° polarized intensity. Finally, S3
describes the preponderance of right circularly polarized intensity over left circularly
polarized intensity. The Stokes parameters are defined as

S0 = Ex0
2 + Ey0

2

S1 = Ex0
2 − Ey0

2

S2 = 2Ex0Ey0cosϕ
S3 = 2Ex0Ey0sinϕ

For completely polarized fields, you can show by time averaging the polarization ellipse
equation that

S0
2 = S1

2 + S2
2 + S3

2

Thus, there are only three independent Stokes’ parameters.

For partially polarized fields, in contrast, the Stokes parameters satisfy the inequality

S0
2 < S1

2 + S3
2 + S3

2

The Stokes parameters are related to the tilt and ellipticity angles, τ and ε

S1 = S0cos2τcos2ε
S2 = S0sin2τcos2ε
S3 = S0sin2ε

and inversely by

tan2τ =
S2
S1

sin2ε =
S3
S0

After you measure the Stokes’ parameters, the shape of the ellipse is completely
determined by the preceding equations.
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The two-dimensional Poincaré sphere can help you visualize the state of a polarized wave.
Any point on or in the sphere represents a state of polarization determined by the four
Stokes parameters, S0, S1, S2, and S3. On the Poincaré sphere, the angle from the S1-S2
plane to a point on the sphere is twice the ellipticity angle, ε. The angle from the S1- axis
to the projection of the point into the S1-S2 plane is twice the tilt angle, τ.

2τ

2ϵ

S
0

S
1

S
3

S
2

As an example, solve for the Stokes parameters of a RHCP field, fv=[1,-i], using the
stokes function.

S = stokes(fv)
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S =

     2
     0
     0
    -2

Sources of Polarized Fields
Antennas couple propagating electromagnetic radiation to electrical currents in wires,
electromagnetic fields in waveguides or aperture fields. This coupling is a phenomenon
common to both transmitting and receiving antennas. For some transmitting antennas,
source currents in a wire produce electromagnetic waves that carrying power in all
directions. Sometimes an antenna provides a means for a guided electromagnetic wave on
a transmission line to transition to free-space waves such as a waveguide feeding a dish
antennas. For receiving antennas, electromagnetic fields can induce currents in wires to
generate signals to be then amplified and passed on to a detector.

For transmitting antennas, the shape of the antenna is chosen to enhance the power
projected into a given direction. For receiving antennas, you choose the shape of the
antenna to enhance the power received from a particular direction. Often, many
transmitting antennas or receiving antennas are formed into an array. Arrays increase the
transmitted power for a transmitting system or the sensitivity for a receiving system.
They improve directivity over a single antenna.

An antenna can be assigned a polarization. The polarization of a transmitting antenna is
the polarization of its radiated wave in the far field. The polarization of a receiving
antenna is actually the polarization of a plane wave, from a given direction, resulting in
maximum power at the antenna terminals. By the reciprocity theorem, all transmitting
antennas can serve as receiving antennas and vice versa.

Each antenna or array has an associated local Cartesian coordinate system (x,y,z) as
shown in the following figure. See “Global and Local Coordinate Systems” on page 10-21
for more information. The local coordinate system can also be represented by a spherical
coordinate system using azimuth, elevation and range coordinates, az, el, r, or alternately
written, (φ,θ,r), as shown. At each point in the far field, you can create a set of unit
spherical basis vectors, eH, eV, r . The basis vectors are aligned with the (φ,θ,r)
directions, respectively. In the far field, the electric field is orthogonal to the unit vector
r . The components of a polarized field with respect to this basis, (EH,EV), are called the
horizontal and vertical components of the polarized field. In radar, it is common to use
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(H,V) instead of (x,y) to denote the components of a polarized field. In the far field, the
polarized electric field takes the form

E = F(ϕ, θ)eikr

r = FH(ϕ, θ)eH + FV(ϕ, θ)eV
eikr

r

In this equation, the quantity F(φ,θ) is called the vector radiation pattern of the source
and contains the angular dependence of the field in the far-field region.

x

y

z

êΗ

êV

θ, el

φ, az

r̂

Radar Coordinate System
r

F(φ,θ)

Short Dipole Antenna Element

The simplest polarized antenna is the dipole antenna which consist of a split length of
wire coupled at the middle to a coaxial cable. The simplest dipole, from a mathematical
perspective, is the Hertzian dipole, in which the length of wire is much shorter than a
wavelength. A diagram of the short dipole antenna of length L appears in the next figure.
This antenna is fed by a coaxial feed which splits into two equal length wires of length
L/2. The current, I, moves along the z-axis and is assumed to be the same at all points in
the wire.
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az

el

x

y

z

r

EH

EV
L/2

-L/2

The electric field in the far field has the form

Er = 0
EH = 0

EV = −
iZ0IL

2λ cosel e−ikr

r

The next example computes the vertical and horizontal polarization components of the
field. The vertical component is a function of elevation angle and is axially symmetric. The
horizontal component vanishes everywhere.
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The toolbox lets you model a short dipole antenna using the
phased.ShortDipoleAntennaElement System object.

Short-Dipole Polarization Components

Compute the vertical and horizontal polarization components of the field created by a
short-dipole antenna pointed along the z-direction. Plot the components as a function of
elevation angle from 0° to 360°.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Create the phased.ShortDipoleAntennaElement System object™.

antenna = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[1,2]*1e9,'AxisDirection','Z');

Compute the antenna response. Because the elevation angle argument to antenna is
restricted to ±90°, compute the responses for 0° azimuth and then for 180° azimuth.
Combine the two responses in the plot. The operating frequency of the antenna is 1.5
GHz.

el = [-90:90];
az = zeros(size(el));
fc = 1.5e9;
resp = antenna(fc,[az;el]);
az = 180.0*ones(size(el));
resp1 = antenna(fc,[az;el]);

Overlay the responses in the same figure.

figure(1)
subplot(121)
polar(el*pi/180.0,abs(resp.V.'),'b')
hold on
polar((el+180)*pi/180.0,abs(resp1.V.'),'b')
str = sprintf('%s\n%s','Vertical Polarization','vs Elevation Angle');
title(str)
hold off
subplot(122)
polar(el*pi/180.0,abs(resp.H.'),'b')
hold on
polar((el+180)*pi/180.0,abs(resp1.H.'),'b')

11 Using Polarization

11-20



str = sprintf('%s\n%s','Horizontal Polarization','vs Elevation Angle');
title(str)
hold off

The plot shows that the horizontal component vanishes, as expected.

Crossed Dipole Antenna Element

You can use a cross-dipole antenna to generate circularly-polarized radiation. The
crossed-dipole antenna consists of two identical but orthogonal short-dipole antennas that
are phased 90° apart. A diagram of the crossed dipole antenna appears in the following
figure. The electric field created by a crossed-dipole antenna constructed from a y-
directed short dipole and a z-directed short dipole has the form
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Er = 0

EH = −
iZ0IL

2λ cosaz e−ikr

r

EV =
iZ0IL

2λ (sinelsinaz + icosel)e−ikr

r

The polarization ratio EV/EH, when evaluated along the x-axis, is just –i which means that
the polarization is exactly RHCP along the x-axis. It is predominantly RHCP when the
observation point is close to the x-axis. Moving away from the x-axis, the field becomes a
mixture of LHCP and RHCP polarizations. Along the –x-axis, the field is LHCP polarized.
The figure illustrates, for a point near the x, that the field is primarily RHCP.

az

el

x

y

z

EL

L/2-L/2

L/2

-L/2
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The toolbox lets you model a crossed-dipole antenna using the
phased.CrossedDipoleAntennaElement System object.

LHCP and RHCP Polarization Components

This example plots the right-hand and left-hand circular polarization components of fields
generated by a crossed-dipole antenna at 1.5 GHz. You can see how the circular
polarization changes from pure RHCP at 0 degrees azimuth angle to pure LHCP at 180
degrees azimuth angle, both at 0 degrees elevation angle.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Create the phased.CrossedDipoleAntennaElement object.

fc = 1.5e9;
antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[1,2]*1e9);

Compute the left-handed and right-handed circular polarization components from the
antenna response.

az = [-180:180];
el = zeros(size(az));
resp = antenna(fc,[az;el]);
cfv = pol2circpol([resp.H.';resp.V.']);
clhp = cfv(1,:);
crhp = cfv(2,:);

Plot both circular polarization components at 0 degrees elevation.

polar(az*pi/180.0,abs(clhp))
hold on
polar(az*pi/180.0,abs(crhp))
title('LHCP and RHCP vs Azithmuth Angle')
legend('LHCP','RHCP')
hold off
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Arrays Supporting Polarization

You can create polarized fields from arrays by using polarized antenna elements as a
value of the Elements property of an array System object. All Phased Array System
Toolbox arrays support polarization.

Scattering Cross-Section Matrix
After a polarized field is created by an antenna system, the field radiates to the far-field
region. When the field propagates into free space, the polarization properties remain
unchanged until the field interacts with a material substance which scatters the field into
many directions. In such situations, the amplitude and polarization of the scattered wave
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can differ from the incident wave polarization. The scattered wave polarization may
depend upon the direction in which the scattered wave is observed. The exact way that
the polarization changes depends upon the properties of the scattering object. The
quantity describing the response of an object to the incident field is called the radar
scattering cross-section matrix (RSCM), S. You can measure the scattering matrix as
follows. When a unit amplitude horizontally polarized wave is scattered, both a horizontal
and a vertical scattered component are produced. Call these two components SHH and
SVH. These components are complex numbers containing the amplitude and phase
changes from the incident wave. Similarly, when a unit amplitude vertically polarized
wave is scattered, the horizontal and vertical scattered component produced are SHV and
SVV. Because, any incident field can be decomposed into horizontal and vertical
components, you can arrange these quantities into a matrix and write the scattered field
in terms of the incident field

EH
(scat)

EV
(scat)

= 4π
λ2

SHH SVH
SHV SVV

EH
(inc)

EV
(inc)

= 4π
λ2 S

EH
(inc)

EV
(inc)

In general, the scattering cross-section matrix depends upon the angles that the incident
and scattered fields make with the object. When the incident field is scattered back to the
transmitting antenna or, backscattered, the scattering matrix is symmetric.

Polarization Signature

To understand how the scattered wave depends upon the polarization of the incident
wave, you need to examine all possible scattered field polarizations for each incident
polarization. Because this amount of data is difficult to visualize, consider two cases:

• For the copolarization case, the scattered polarization has the same polarization as the
incident field.

• For the cross-polarization case, the scattered polarization has an orthogonal
polarization to the incident field.

You can represent the incident polarizations in terms of the tilt angle-ellipticity angle pair
τ, ε . Every unit incident polarization vector can be expressed as

EH
(inc)

EV
(inc)

=
cosτ −sinτ
sinτ cosτ

cosε
jsinε

while the orthogonal polarization vector is
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EH
(inc) ⊥

EV
(inc) ⊥

=
−sinτ −cosτ
cosτ −sinτ

cosε
− jsinε

When you have an RSCM matrix, S, form the copolarization signature by computing

P(co) = EH
(inc) EV

(inc) *S
EH

(inc)

EV
(inc)

where []* denotes complex conjugation. To obtain the cross-polarization signature,
compute

P(cross) = EH
(inc) ⊥ EV

(inc) ⊥ *S
EH

(inc)

EV
(inc)

You can compute both the copolarization and cross polarization signatures using the
polsignature function. This function returns the absolute value of the scattered power
(normalized by its maximum value). The next example shows how to plot the polarization
signatures for the RSCM matrix

S =
2i 1

2
1
2 i

for all possible incident polarizations. The range of values of the ellipticity angle and tilt
span the entire possible range of polarizations.

Plot Polarization Signatures

Plot the copolarization and cross-polarization signatures of the scattering matrix

2i 0 . 5
0 . 5 −i

.

Specify the scattering matrix. and specify the range of ellipticity angles and orientation
(tilt) angles that define the polarization states. These angles cover all possible incident
polarization states.
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rscmat = [1i*2,0.5;0.5,-1i];
el = [-45:45];
tilt = [-90:90];

Plot the copolarization signatures for all incident polarizations.

polsignature(rscmat,'c',el,tilt)

Plot the cross-polarizations signatures for all incident polarizations.

polsignature(rscmat,'x',el,tilt)
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Polarization Loss Due to Field and Receiver Mismatch
An antenna that is used to receive polarized electromagnetic waves achieves its maximum
output power when the antenna polarization is matched to the polarization of the incident
electromagnetic field. Otherwise, there is polarization loss:

• The polarization loss is computed from the projection (or dot product) of the
transmitted field’s electric field vector onto the receiver polarization vector.

• Loss occurs when there is a mismatch in direction of the two vectors, not in their
magnitudes.
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• The polarization loss factor describes the fraction of incident power that has the
correct polarization for reception.

Using the transmitter’s spherical basis at the receiver’s position, you can represent the
incident electric field, (EiH, EiV), by

E = EiHeH + EiV eV = EmPi

You can represent the receiver’s polarization vector, (PH, PV), in the receiver’s local
spherical basis by:

P = PHe′H + PV e′V

The next figure shows the construction of the transmitter and receiver spherical basis
vectors.
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Transmitter Coordinate System
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The polarization loss is defined by:

ρ =
Ei ⋅ P 2

Ei
2 P 2
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and varies between 0 and 1. Because the vectors are defined with respect to different
coordinate systems, they must be converted to the global coordinate system to form the
projection. The toolbox function polloss computes the polarization mismatch between
an incident field and a polarized antenna.

To achieve maximum output power from a receiving antenna, the matched antenna
polarization vector must be the complex conjugate of the incoming field’s polarization
vector. As an example, if the incoming field is RHCP, with polarization vector given by
er = 1

2(ex− iey), the optimum receiver antenna polarization is LHCP. The introduction of

the complex conjugate is needed because field polarizations are described with respect to
its direction of propagation, whereas the polarization of a receive antenna is usually
specified in terms of the direction of propagation towards the antenna. The complex
conjugate corrects for the opposite sense of polarization when receiving.

As an example, if the transmitting antenna transmits an RHCP field, the polarization loss
factors for various received antenna polarizations are

Receive Antenna
Polarization

Receive Antenna
Polarization Vector

Polarization Loss
Factor

Polarization Loss
Factor (dB)

Horizontal linear eH 1/2 3 dB
Vertical linear eV 1/2 3
RHCP er = 1

2(ex− iey)
0 ∞

LHCP el = 1
2(ex + iey) 1 0

Model Radar Transmitting Polarized Radiation
This example models a tracking radar based on a 31-by-31 (961-element) uniform
rectangular array (URA). The radar is designed to follow a moving target. At each time
instant, the radar points in the known direction of the target. The basic radar
requirements are the probability of detection, pd, the probability of false alarm, pfa, the
maximum unambiguous range, max_range, and the range resolution, range_res, (all
distance units are in meters). The range_gate parameter limits the region of interest to
a range smaller than the maximum range. The operating frequency is set in fc. The
simulation lasts for numpulses pulses.
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Radar Definition

Set up the radar operating parameters. The existing radar design meets the following
specifications.

pd = 0.9;            % Probability of detection
pfa = 1e-6;          % Probability of false alarm
max_range = 1500*1000; % Maximum unambiguous range
range_res = 50.0;    % Range resolution
rangegate = 5*1000;  % Assume all objects are in this range
numpulses = 200;     % Number of pulses to integrate
fc = 8e9;            % Center frequency of pulse
c = physconst('LightSpeed');
tmax = 2*rangegate/c; % Time of  echo from object at rangegate

Pulse Repetition Interval

Set the pulse repetition interval, PRI, and pulse repetition frequency, PRF, based on the
maximum unambiguous range.

PRI = 2*max_range/c;
PRF = 1/PRI;

Transmitted Signal

Set up the transmitted rectangular waveform using the phased.RectangularWaveform
System object(TM). The waveform pulse width, pulse_width, and pulse bandwidth,
pulse_bw, are determined by the range resolution, range_res, that you select. Specify
the sampling rate, fs, to be twice the pulse bandwidth. The sampling rate must be an
integer multiple of the PRF. Therefore, modify the sampling rate to satisfy the
requirement.

pulse_bw = c/(2*range_res);    % Pulse bandwidth
pulse_width = 1/pulse_bw;               % Pulse width
fs = 2*pulse_bw;                        % Sampling rate
n = ceil(fs/PRF);
fs = n*PRF;
waveform = phased.RectangularWaveform('PulseWidth',pulse_width,'PRF',PRF,...
    'SampleRate',fs);

Antennas and URA Array

The array consists of short-dipole antenna elements. Use the
phased.ShortDipoleAntennaElement System object to create a short-dipole antenna
oriented along the z-axis.
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antenna = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[5e9,10e9],'AxisDirection','Z');

Define a 31-by-31 Taylor tapered uniform rectangular array using the phased.URA
System object. Set the size of the array using the number of rows, numRows, and the
number of columns, numCols. The distance between elements, d, is slightly smaller than
one-half the wavelength, lambda. Compute the array taper, tw, using separate Taylor
windows for the row and column directions. Obtain the Taylor weights using the
taylorwin function. Plot the 3-D array response using the array pattern method.

numCols = 31;
numRows = 31;
lambda = c/fc;
d = 0.9*lambda/2; % Nominal spacing
wc = taylorwin(numCols);
wr = taylorwin(numRows);
tw = wr*wc';
array = phased.URA('Element',antenna,'Size',[numCols,numRows],...
    'ElementSpacing',[d,d],'Taper',tw);
pattern(array,fc,[-180:180],[-90:90],'CoordinateSystem','polar','Type','powerdb',...
    'Polarization','V');
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Radar Platform Motion

Next, set the position and motion of the radar platform in the phased.Platform System
object. The radar is assumed to be stationary and positioned at the origin. Set the
Velocity property to [0,0,0] and the InitialPosition property to [0,0,0]. Set
the InitialOrientationAxes property to the identity matrix to align the radar
platform coordinate axes with the global coordinate system.

radarPlatformAxes = [1 0 0;0 1 0;0 0 1];
radarplatform = phased.Platform('InitialPosition',[0;0;0],...
    'Velocity',[0;0;0],'OrientationAxes',radarPlatformAxes);
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Transmitters and Receivers

In radar, the signal propagates in the form of an electromagnetic wave. The signal is
radiated and collected by the antennas used in the radar system. Associate the array with
a radiator System object, phased.Radiator, and two collector System objects,
phased.Collector. Set the WeightsInputPort property of the radiator to true to
enable dynamic steering of the transmitted signal at each execution of the radiator.
Creating the two collectors allows for collection of both horizontal and vertical
polarization components.

radiator = phased.Radiator('Sensor',array,'OperatingFrequency',fc,...
    'PropagationSpeed',c,'CombineRadiatedSignals',true,...
    'Polarization','Combined','WeightsInputPort',true);
collector1 = phased.Collector('Sensor',array,'OperatingFrequency',fc,...
    'PropagationSpeed',c,'Wavefront','Plane','Polarization','Combined',...
    'WeightsInputPort',false);
collector2 = phased.Collector('Sensor',array,'OperatingFrequency',fc,...
    'PropagationSpeed',c,'Wavefront','Plane','Polarization','Combined',...
    'WeightsInputPort',false);

Estimate the peak power needed in the phased.Transmitter System object to calculate
the desired radiated power levels. The transmitted peak power is the power required to
achieve a minimum-detection SNR, snr_min. You can determine the minimum SNR from
the probability of detection,|pd|, and the probability of false alarm, pfa, using the
albersheim function. Then, compute the peak power from the radar equation using the
radareqpow function. Among the inputs to this function are the overall signal gain,
which is the sum of the transmitting element gain, TransmitterGain and the array
gain, AG. Another input is the maximum detection range, rangegate. Finally, you need to
supply a target cross-section value, tgt_rcs. A scalar radar cross section is used in this
code section as an approximation even though the full polarization computation later uses
a 2-by-2 radar cross section scattering matrix.

Estimate the total transmitted power to achieve a required detection SNR using all the
pulses.

The SNR has contributions from the transmitting element gain as well as the array gain.
Compute first an estimate of the array gain, then add the array gain to the transmitter
gain to get the peak power which achieves the desired SNR.

• Use an approximate target cross section of 1.0 for the radar equation even though the
analysis calls for the full scattering matrix.
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• Set the maximum range to be equal to the value of 'rangegate' since targets outside
that range are of no interest.

• Compute the array gain as 10*log10(number of elements)
• Assume each element has a gain of 20 dB.

snr_min = albersheim(pd, pfa, numpulses);
AG = 10*log10(numCols*numRows);
tgt_rcs = 1;
TransmitterGain = 20;
peak_power = radareqpow(lambda,rangegate,snr_min,waveform.PulseWidth,...
    'RCS',tgt_rcs,'Gain',TransmitterGain + AG);
transmitter = phased.Transmitter('PeakPower',peak_power,'Gain',TransmitterGain,...
    'LossFactor',0,'InUseOutputPort',true,'CoherentOnTransmit',true);

Define Target

We want to simulate the pulse returns from a target that is rotating so that the scattering
cross-section matrix changes from pulse to pulse. Create a rotating target object and a
moving target platform. The rotating target is represented later as an angle-dependent
scattering matrix. Rotation is in degrees per second.

targetSpeed = 1000;
targetVec = [-1;1;0]/sqrt(2);
target = phased.RadarTarget('EnablePolarization',true,...
    'Mode','Monostatic','ScatteringMatrixSource','Input port',...
    'OperatingFrequency',fc);
targetPlatformAxes = [1 0 0;0 1 0;0 0 1];
targetRotRate = 45;
targetplatform = phased.Platform('InitialPosition',[3500.0; 0; 0],...
    'Velocity', targetSpeed*targetVec);

Other System objects

• Steering vector defined by phased.SteeringVector System object.
• Beamformer defined by phased.PhaseShiftBeamformer System object. The

DirectionSource property is set to 'Input Port' to enable the beamformer to
always points towards the known target direction at each execution.

• Free-space propagator using the phased.FreeSpace System object.
• Receiver preamp model using the phased.ReceiverPreamp system object.
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Signal propagation

Because the reflected signals are received by an array, use a beamformer pointing to the
steering direction to obtain the combined signal.

steeringvector = phased.SteeringVector('SensorArray',array,'PropagationSpeed',c,...
    'IncludeElementResponse',false);
beamformer = phased.PhaseShiftBeamformer('SensorArray',array,...
    'OperatingFrequency',fc,'PropagationSpeed',c,...
    'DirectionSource','Input port');
channel = phased.FreeSpace('SampleRate',fs,...
    'TwoWayPropagation',true,'OperatingFrequency',fc);
% Define a receiver with receiver noise
amplifier = phased.ReceiverPreamp('Gain',20,'LossFactor',0,'NoiseFigure',1,...
    'ReferenceTemperature',290,'SampleRate',fs,'EnableInputPort',true,...
    'PhaseNoiseInputPort',false,'SeedSource','Auto');

For such a large PRI and sampling rate, there will be too many samples per element. This
will cause problems with the collector which has 961 channels. To keep the number of
samples manageable, set a maximum range of 5 km. We know that the target is within
this range.

This set of axes specifies the direction of the local coordinate axes with respect to the
global coordinate system. This is the orientation of the target.

Processing Loop

Pre-allocate arrays for collecting data to be plotted.

sig_max_V  = zeros(1,numpulses);
sig_max_H  = zeros(1,numpulses);
tm_V = zeros(1,numpulses);
tm_H = zeros(1,numpulses);

After all the System objects are created, loop over the number of pulses to create the
reflected signals.

maxsamp = ceil(tmax*fs);
fast_time_grid = [0:(maxsamp-1)]/fs;
rotangle = 0.0;
for m = 1:numpulses
    x = waveform(); % Generate pulse
    % Capture only samples within range gated
    x = x(1:maxsamp);
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    [s, tx_status] = transmitter(x);   % Create transmitted pulse
    % Move the radar platform and target platform.
    [radarPos,radarVel] = radarplatform(1/PRF);
    [targetPos,targetVel] = targetplatform(1/PRF);    
    % Compute the known target angle
    [targetRng,targetAng] = rangeangle(targetPos,...
        radarPos,...
        radarPlatformAxes);
    % Compute the radar angle with respect to the target axes.
    [radarRng,radarAng] = rangeangle(radarPos,...
        targetPos,...
        targetPlatformAxes);    
    % Calculate the steering vector designed to track the target
    sv = steeringvector(fc,targetAng);
    % Radiate the polarized signal toward the targat
    tsig1 = radiator(s,targetAng,radarPlatformAxes,conj(sv));
    % Compute the two-way propagation loss (4*pi*R/lambda)^2
    tsig2 = channel(tsig1,radarPos,targetPos,radarVel,targetVel);
    % Create a very simple model of a changing scattering matrix
    scatteringMatrix = [cosd(rotangle),0.5*sind(rotangle);...
        0.5*sind(rotangle),cosd(rotangle)];
    rsig1 = target(tsig2,radarAng,targetPlatformAxes,scatteringMatrix);  % Reflect off target
    % Collect the vertical component of the radiation.
    rsig3V = collector1(rsig1,targetAng,radarPlatformAxes);   
    % Collect the horizontal component of the radiation. This
    % second collector is rotated around the x-axis to be more
    % sensitive to horizontal polarization
    rsig3H = collector2(rsig1,targetAng,rotx(90)*radarPlatformAxes);  
    % Add receiver noise to both sets of signals
    rsig4V = amplifier(rsig3V,~(tx_status>0)); % Receive signal
    rsig4H = amplifier(rsig3H,~(tx_status>0)); % Receive signal
    % Beamform the signal
    rsigV = beamformer(rsig4V,targetAng); % Beamforming
    rsigH = beamformer(rsig4H,targetAng); % Beamforming   
    % Find the maximum returns for each pulse and store them in
    % a vector. Store the pulse received time as well.
    [sigmaxV,imaxV] = max(abs(rsigV));
    [sigmaxH,imaxH] = max(abs(rsigH));
    sig_max_V(m) = sigmaxV;
    sig_max_H(m) = sigmaxH;
    tm_V(m) = fast_time_grid(imaxV) + (m-1)*PRI;
    tm_H(m) = fast_time_grid(imaxH) + (m-1)*PRI;
    
    % Update the orientation of the target platform axes
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    targetPlatformAxes = ...
        rotx(PRI*targetRotRate)*targetPlatformAxes;
    rotangle = rotangle + PRI*targetRotRate;
end
% Plot the vertical and horizontal polarization for each pulse as a
% function of time.
plot(tm_V,sig_max_V,'.')
hold on
plot(tm_H,sig_max_H,'r.')
hold off
xlabel('Time (sec)')
ylabel('Amplitude')
title('Vertical and Horizontal Polarization Components')
legend('Vertical','Horizontal')
grid on
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Antenna and Array Definitions

• “Element and Array Radiation and Response Patterns” on page 12-2
• “Grating Lobe Diagram for Microphone URA” on page 12-11
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Element and Array Radiation and Response Patterns
In this section...
“Element Response and Radiation Patterns” on page 12-2
“Array Response and Radiation Patterns” on page 12-6

Element Response and Radiation Patterns
Antennas and acoustic transducers create radiated fields which propagate outwards into
space or into the air and water for acoustics. Conversely, antennas and transducers react
to impinging fields to produce output voltages. Transducers are called microphones or
speakers in speech acoustics or projectors or hydrophones in ocean acoustics. The
electromagnetic fields created by an antenna, or the acoustic field created by a
transducer, depend upon the distance and direction from the radiator. The terms response
pattern and radiation pattern are often used interchangeably but the term radiation
pattern is mostly used to describe the field radiated by an element and the term response
pattern is mostly used to describe the output of the antenna with respect to impinging
wave field as a function of wave direction. By the principle of reciprocity, these two
patterns are identical. When discussing the generation of the patterns, it is conceptually
easier to think in terms of radiation patterns.

In radar and sonar applications, the interactions between fields and targets take place in
the far-field region, often called the Fraunhofer region. The far-field region is defined as
the region for which

r≫L2/λ

where L represents the largest dimension of the source. In the far-field region, the fields
take a special form: they can be written as the product of a function of direction (such as
azimuth and elevation angles) and a geometric fall-off function, 1/r. It is the angular
function that is called the radiation pattern, response pattern, or simply pattern.

Radiation patterns can be viewed as field patterns or as power patterns. The terms “field”
or “power” are often added to be more specific: contrast element field pattern versus
element power pattern. The radiation power pattern describes the radiant intensity of a
field, U, as a function of direction. Radiant intensity units are watts/steradian. Sometimes,
radiant intensity is confused with power density. Power density, I, is the energy passing
through a unit area in a unit time. Units for power density are Watts/square meter.
Unfortunately, in some disciplines, power density is sometimes called intensity. This
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document always uses radiant intensity instead of intensity to avoid confusion. For a point
source, the radiant intensity is the power density multiplied by the square of the distance
from the source, U = r2I.

Element Field Patterns

The element field response or element field pattern represents the angular distribution of
the electromagnetic field create by an antenna, E(θ,φ), or the scalar acoustic field, p(θ,φ),
generated by an acoustic transducer such as a speaker or hydrophone. Because the far
field electromagnetic field consists of horizontal and vertical components orthogonal,
(EH(θ,φ), EV(θ,φ)) there can be different patterns for each component. Acoustic fields are
scalar fields so there is only one pattern. The general form of any field or field component
is

A f (θ, ϕ)e−ikr

r

where A is a nominal field amplitude and f(θ,φ) is the normalized field pattern (normalized
to unity). Because the field patterns are evaluated at some reference distance from the
source, the fields returned by the element step method are represented simply as A
f(θ,φ). You can display the nominal element field pattern by invoking the element
pattern method and then choosing the 'Type' parameter value as 'efield' and
setting the 'Normalize' parameter to false.

pattern(elem,'Normalize',false,'Type','efield');

You can view the normalized field pattern by setting the 'Normalize' parameter value
to true. For example, if EH(θ,φ) is the horizontal component of the complex
electromagnetic field, the normalized field pattern has the form |EH(θ,φ)/EH,max|.

pattern(elem,'Polarization','H','Normalize',true,'Type','efield');

Element Power Patterns

The element power response (or element power radiation pattern) is defined as the
angular distribution of the radiant intensity in the far field, Urad(θ,φ). When the elements
are used for reception, the patterns are interpreted as the sensitivity of the element to
radiation arriving from direction (θ,φ) and the power pattern represents the output
voltage power of the element as a function of wave arrival direction.

Physically, the radiant intensity for the electromagnetic field produced by an antenna
element is
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Urad(θ, ϕ) = r2

2Z0
EH

2 + EV
2

where Z0 is the characteristic impedance of free space. The radiant intensity of an
acoustic field is

Urad(θ, ϕ) = r2

2Z p
2

where Z is the characteristic impedance of the acoustic medium. For the fields produced
by the Phased Array System Toolbox element System objects, the radial dependence, the
impedances, and the field magnitudes are all collected in the nominal field amplitudes
defined above. Then the radiant intensity can generally be written

Urad(θ, ϕ) = Af (θ, ϕ) 2

The radiant intensity pattern is the quantity returned by the element pattern method
when the 'Normalize' parameter is set to false and the 'Type' parameter is set to
'power' (or 'powerdb' for decibels).

pattern(elem,'Normalize',false,'Type','power');

The normalized power pattern is defined as the radiant intensity divided by its maximum
value

Unorm(θ, ϕ) =
Urad(θ, ϕ)
Urad, max

= f (θ, ϕ)
2

The pattern method returns a normalized power pattern when the 'Normalize'
parameter is set to true and the 'Type' parameter is set to 'power' (or 'powerdb' for
decibels).

pattern(elem,'Normalize',true,'Type','power');

Element Directivity

Element directivity measures the capability of an antenna or acoustic transducer to
radiate or receive power preferentially in a particular direction. Sometimes it is referred
to as directive gain. Directivity is measured by comparing the transmitted radiant
intensity in a given direction to the transmitted radiant intensity of an isotropic radiator
having the same total transmitted power. An isotropic radiator radiates equal power in all
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directions. The radiant intensity of an isotropic radiator is just the total transmitted power
divided by the solid angle of a sphere, 4π,

Urad
iso (θ, ϕ) =

Ptotal
4π

The element directivity is defined to be

D(θ, ϕ) =
Urad(θ, ϕ)

Urad
iso = 4π

Urad(θ, ϕ)
Ptotal

By this definition, the integral of the directivity over a sphere surrounding the element is
exactly 4π. Directivity is related to the effective beamwidth of an element. Start with an
ideal antenna that has a uniform radiation field over a small solid angle (its beamwidth),
ΔΩ, in a particular direction, and zero outside that angle. The directivity is

D(θ, ϕ) = 4π
Urad(θ, ϕ)

Ptotal
= 4π

ΔΩ

The greater the directivity, the smaller the beamwidth.

The radiant intensity can be expressed in terms of the directivity and the total power

Urad(θ, ϕ) = 1
4πD(θ, ϕ)Ptotal

As an example, the directivity of the electric field of a z-oriented short-dipole antenna
element is

D(θ, ϕ) = 3
2cos2θ

with a peak value of 1.5. Often, the largest value of D(θ,φ) is specified as an antenna
operating parameter. The direction in which D(θ,φ) is largest is the direction of maximum
power radiation. This direction is often called the boresight direction. In some of the
literature, the maximum value itself is called the directivity, reserving the phrase
directive gain for what is called here directivity. For the short-dipole antenna, the
maximum value of directivity occurs at θ = 0, independent of φ, and attains a value of 3/2.
The concept of directivity applies to receiving antennas as well. It describes the output
power as a function of the arrival direction of a plane wave impinging upon the antenna.
By reciprocity, the directivity of a receiving antenna is the same as the directivity when
used as a transmitting antenna. A quantity closely related to directivity is element gain.
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The definition of directivity assumes that all the power fed to the element is radiated to
space. In reality, system losses reduce the radiant intensity by some factor, the element
efficiency, η. The term Ptotal becomes the power supplied to the antenna and Prad becomes
the power radiated into space. Then, Prad = ηPtotal. The element gain is

G(θ, ϕ) = 4π
Urad(θ, ϕ)

Ptotal
= 4πη

Urad(θ, ϕ)
Prad

= ηD(θ, ϕ)

and represents the power radiated away from the element compared to the total power
supplied to the element.

Using the element pattern method, you can plot the directivity of an element by setting
the 'Type' parameter to 'directivity',

pattern(elem,'Type','directivity');

Array Response and Radiation Patterns
Array Magnitude and Power Patterns

When individual antenna elements are aggregated into arrays of elements, new response/
radiation patterns are created which depend upon both the element patterns and the
geometry of the array. These patterns are called beampatterns to reflect the fact that the
pattern can be constructed to have a narrow angular distribution, that is, a beam. This
term is used for an array in transmitting or receiving modes. Most often, but not always,
the array consists of identical antennas. The identical antenna case is interesting because
it lets us partition the radiation pattern into two components: one component describes
the element radiation pattern and the second describes the array radiation pattern.

Just as an array of transmitting elements has a radiation pattern, an array of receiving
elements has a response pattern which describes how the output voltage of the array
changes with the direction of arrival of a plane incident wave. By reciprocity, the response
pattern is identical to the radiation pattern.

For transmitting arrays, the voltage driving the elements can be phase-adjusted to allow
the maximum radiant intensity to be transmitted in a particular direction. For receiving
arrays, the arriving signals can be phase-adjusted to maximize the sensitivity in a
particular direction.

Start with a simple model of the radiation field produced by a single antenna which is
given by
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y(θ, ϕ, r) = Af (θ, ϕ)e−ikr

r

where A is the field amplitude and f((θ,φ) is the normalized element field pattern. This
field can represent any of the components of the electric field, a scalar field, or an
acoustic field. For an array of identical elements, the output of the array is the weighted
sum of the individual elements, using the complex weights, wm

z(θ, ϕ, r) = A ∑
m = 0

M − 1
wm* f (θ, ϕ)e−ikrm

rm

where rm is the distance from the mth element source point to the field point. In the far-
field region, this equation takes the form

z(θ, ϕ, r) = Ae−ikr

r f (θ, ϕ) ∑
m = 0

M − 1
wm* e−iku · xm

where xm are the vector positions of the array elements with respect to the array origin. u
is the unit vector from the array origin to the field point. This equation can be written
compactly is the form

z(θ, ϕ, r) = Ae−ikr

r f (θ, ϕ)wHs

The term wHs is called the array factor, Farray(θ,φ). The vector s is the steering vector (or
array manifold vector) for directions of propagation for transmit arrays or directions of
arrival for receiving arrays

s(θ, ϕ) = …, eiku · xm, …

The total array pattern consists of an amplitude term, an element pattern, f(θ,φ), and an
array factor, Farray(θ,φ). The total angular behavior of the array pattern, B(θ,φ), is called
the beampattern of the array

z(θ, ϕ, r) = Ae−ikr

r f (θ, ϕ)wHs = Ae−ikr

r f (θ, ϕ)Farray(θ, ϕ) = Ae−ikr

r B(θ, ϕ)

When evaluated at the reference distance, the array field pattern has the form

Af (θ, ϕ)wHs = Af (θ, ϕ)Farray(θ, ϕ) = AB(θ, ϕ)
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The pattern method, when the 'Normalize' parameter is set to false and the
'Type' parameter is set to 'efield', returns the magnitude of the array field pattern at
the reference distance.

pattern(array,'Normalize',false,'Type','efield');

When the 'Normalize' parameter is set to true, the pattern method returns a pattern
normalized to unity.

pattern(array,'Normalize',true,'Type','efield');

The array power pattern is given by

Af (θ, ϕ)wHs 2 = Af (θ, ϕ)Farray(θ, ϕ) 2 = AB(θ, ϕ) 2

The pattern method, when the 'Normalize' parameter is set to false and the
'Type' parameter is set to 'power' or 'powerdb', returns the array power pattern at
the reference distance.

pattern(array,'Normalize',false,'Type','power');

When the 'Normalize' parameter is set to true, the pattern method returns the
power pattern normalized to unity.

pattern(array,'Normalize',true,'Type','power');

For the conventional beamformer, the weights are chosen to maximize the power
transmitted towards a particular direction, or in the case of receiving arrays, to maximize
the response of the array for a particular arrival direction. If u0 is the desired pointing
direction, then the weights which maximize the power and response in this direction have
the general form

w = wm e−iku0 · xm

For these weights, the array factor becomes

Farray(θ, ϕ) = ∑
m = 0

M − 1
wm e−ik(u− u0) · xm

which has a maximum at u = u0.
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Array Directivity

Array directivity is defined the same way as element directivity: the radiant intensity in a
specific direction divided by the isotropic radiant intensity. The isotropic radiant intensity
is the array total radiated power divided by 4π. In terms of the arrays weights and
steering vectors, the directivity can be written as

D(θ, ϕ) = 4π
Af (θ, ϕ)wHs 2

Ptotal

where Ptotal is the total radiated power from the array. In a discrete implementation, the
total radiated power can be computed by summing radiant intensity values over a uniform
grid of angles that covers the full sphere surrounding the array

Ptotal = 2π2

MN ∑
m = 0

M − 1
∑

n = 0

N − 1
Af (θm, ϕn)wHs(θm, ϕn)

2
cosθm

where M is the number of elevation grid points and N is the number of azimuth grid
points.

Because the radiant intensity is proportional to the beampattern, B(θ,φ), the directivity
can also be written in terms of the beampattern

D(θ, ϕ) = 4π B(θ, ϕ) 2

∫ B(θ, ϕ)
2
cosθdθdϕ

You can plot the directivity of an array by setting the 'Type' parameter of the pattern
methods to 'directivity',

pattern(array,'Type','directivity');

Array Gain

In the Phased Array System Toolbox, array gain is defined to be the array SNR gain. Array
gain measures the improvement in SNR of a receiving array over the SNR for a single
element. Because an array is a spatial filter, the array SNR depends upon the spatial
properties of the noise field. When the noise is spatially isotropic, the array gain takes a
simple form
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G =
SNRarray

SNRelement
=

wHs 2

wHw

In addition, for an array with uniform weights, the array gain for an N-element array has
a maximum value at boresight of N (or 10logN in db).
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Grating Lobe Diagram for Microphone URA
Plot the grating lobe diagram for an 11-by-9-element uniform rectangular array having
element spacing equal to one-half wavelength.

Assume the operating frequency of the array is 10 kHz. All elements are omnidirectional
microphone elements. Steer the array in the direction 20 degrees in azimuth and 30
degrees in elevation. The speed of sound in air is 344.21 m/s at 21 deg C.

cair = 344.21;
f = 10.0e3;
lambda = cair/f;
microphone = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 20000]);
array = phased.URA('Element',microphone,'Size',[11,9],...
    'ElementSpacing',0.5*lambda*[1,1]);
plotGratingLobeDiagram(array,f,[20;30],cair);
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Plot the grating lobes. The main lobe of the array is indicated by a filled black circle. The
grating lobes in visible and nonvisible regions are indicated by unfilled black circles. The
visible region is the region in u-v coordinates for which u2 + v2 ≤ 1. The visible region is
shown as a unit circle centered at the origin. Because the array spacing is less than one-
half wavelength, there are no grating lobes in the visible region of space. There are an
infinite number of grating lobes in the nonvisible regions, but only those in the range
[-3,3] are shown.

The grating-lobe free region, shown in green, is the range of directions of the main lobe
for which there are no grating lobes in the visible region. In this case, it coincides with
the visible region.

The white areas of the diagram indicate a region where no grating lobes are possible.
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Sonar System Models

• “Sonar Equation” on page 13-2
• “Doppler Effect for Sound” on page 13-7
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Sonar Equation
The sonar equation is used in underwater signal processing to relate received signal
power to transmitted signal power for one-way or two-way sound propagation. The
equation computes the received signal-to-noise ratio (SNR) from the transmitted signal
level, taking into account transmission loss, noise level, sensor directivity, and target
strength. The sonar equation serves the same purpose in sonar as the radar equation does
in radar. The sonar equation has different forms for passive sonar and active sonar.

Passive Sonar Equation
In a passive sonar system, sound propagates directly from a source to a receiver. The
passive sonar equation is

SNR = SL− TL− (NL− DI)

where SNR is the received signal-to-noise ratio in dB.

Source Level (SL)

The source level (SL) is the ratio of the transmitted intensity from the source to a
reference intensity, converted to dB:

SL = 10log
Is

Iref

where Is is the intensity of the transmitted signal measured at 1 m distance from the
source. The reference intensity, Iref, is the intensity of a sound wave having a root mean
square (rms) pressure of 1 μPa. Source level is sometimes written in dB// 1 μPa, but
actually is referenced to the intensity of a 1 μPa signal. The relation between intensity
and pressure is

I =
prms

2

ρc

where ρ is the density of seawater, (approximately 1000 kg/m3), c is the speed of sound
(approximately 1500 m/s). 1 μPa is equivalent to an intensity of Iref = 6.667 ✕ 10-19 W/m2

Sometimes, it is useful to compute the source level from the transmitted power, P.
Assuming a nondirectional (isotropic) source, the intensity at one meter from the source
is
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I = P
4π

Then, the source level as a function of transmitted power is

SL = 10log10
I

Iref
= 10log10

P
4πIref

= 10log10P − 10log104πIref = 10log10P + 170.8

When source level is defined at one yard instead of one meter, the final constant in this
equation is 171.5.

When the source is directional, the source level becomes

SL = 10log10
I

Iref
= 10log10P + 170.8 + DIsrc

where DIsrc is the directivity of the source. Source directivity is not explicitly included in
the sonar equation.

Receiver Directivity Index (DI)

The sonar equation includes the directivity index of the receiver (DI). Directivity is the
ratio of the total noise power at the array to the noise received by the array along its main
response axis. Directivity improves the signal-to-noise ratio by reducing the total noise.
See “Element and Array Radiation and Response Patterns” on page 12-2 for discussions of
directivity.

Transmission Loss (TL)

Transmission loss is the attenuation of sound intensity as the sound propagates through
the underwater channel. Transmission loss (TL) is defined as the ratio of sound intensity
at 1 m from a source to the sound intensity at distance R.

TL = 10log
Is

I(R)

There are two major contributions to transmission loss. The larger contribution is
geometrical spreading of the sound wavefront. The second contribution is absorption of
the sound as it propagates. There are several absorption mechanisms.

In an infinite medium, the wavefront expands spherically with distance, and attenuation
follows a 1/R2 law, where R is the propagation distance. However, the ocean channel has a
surface and a bottom. Because of this, the wavefronts expand cylindrically when they are
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far from the source and follow a 1/R law. Near the source, the wavefronts still expand
spherically. There must be a transition region where the spreading changes from
spherical to cylindrical. In Phased Array System Toolbox sonar models, the transition
region as a single range and ensures that the transmission loss is continuous at that
range. Authors define the transition range differently. Here, the transition range, Rtrans, is
one-half the depth, D, of the channel. The geometric transmission loss for ranges less
than the transition range is

TLgeom = 20log10R

For ranges greater than the transition depth, the geometric transmission loss is

TLgeom = 10log10R + 10log10Rtrans

In Phased Array System Toolbox, the transition range is one-half the channel depth, H/2.

The absorption loss model has three components: viscous absorption, the boric acid
relaxation process, and the magnesium sulfate relaxation process. All absorption
components are modeled by linear dependence on range, αR.

Viscous absorption describes the loss of intensity due to molecular motion being
converted to heat. Viscous absorption applies primarily to higher frequencies. The viscous
absorption coefficient is a function of frequency, f, temperature in Celsius, T, and depth,
D:

αvis = 4.9 × 10−4f 2e−(T /27 + D/17)

in dB/km. This is the dominant absorption mechanism above 1 MHz. Viscous absorption
increases with temperature and depth.

The second mechanism for absorption is the relaxation process of boric acid. Absorption
depends upon the frequency in kHz, f, the salinity in parts per thousand (ppt), S, and
temperature in Celsius,T. The absorption coefficient (measured in dB/km) is

αB = 0.106
f1f 2

f1
2 + f 2e−(pH − 8)/0.56

f1 = 0.78 S/35eT /26

in dB/km. f1 is the relaxation frequency of boric acid and is about 1.1 kHz at T = 10 °C
and S = 35 ppt.
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The third mechanism is the relaxation process of magnesium sulfate. Here, the absorption
coefficient is

αM = 0.52 1 + T
43

S
35

f2f 2

f2
2 + f 2e−D/6

f2 = 42eT /17

in dB/km. f2 is the relaxation frequency of magnesium sulfate and is about 75.6 kHz at T =
10°C and S = 35 ppt.

The total transmission loss modeled in the toolbox is

TL = TLgeom(R) + (αvis + αB + αM)R

where R is the range in km. In Phased Array System Toolbox, all absorption models
parameters are fixed at T = 10, S = 35, and pH = 8. The model is implemented in
range2tl. Because TL is a monotonically increasing function of R, you can use the
Newton-Raphson method to solve for R in terms of TL. This calculation is performed in
tl2range.

Noise Level (NL)

Noise level (NL) is the ratio of the noise intensity at the receiver to the same reference
intensity used for source level.

Active Sonar Equation
The active sonar equation describes a scenario where sound is transmitted from a source,
reflects off a target, and returns to a receiver. When the receiver is collocated with the
source, this sonar system is called monostatic. Otherwise, it is bistatic. Phased Array
System Toolbox models monostatic sonar systems. The active sonar equation is

SNR = SL− 2TL− (NL− DI) + TS

where 2TL is the two-way transmission loss (in dB) and TS is the target strength (in dB).
The transmission loss is calculated by computing the outbound and inbound transmission
losses (in dB) and adding them. In this toolbox, two-way transmission loss is twice the
one-way transmission loss.
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Target Strength (TS)

Target strength is the sonar analog of radar cross section. Target strength is the ratio of
the intensity of a reflected signal at 1 m from a target to the incident intensity, converted
to dB. Using the conservation of energy or, equivalently, power, the incident power on a
target equals the reflected power. The incident power is the incident signal intensity
multiplied by an effective cross-sectional area, σ. The reflected power is the reflected
signal intensity multiplied by the area of a sphere of radius R centered on the target. The
ratio of the reflected power to the incident power is

Iincσ = Irefl4πR2

Irefl
Iinc

= σ
4πR2 .

The reflected intensity is evaluated on a sphere of 1 m radius. The target strength
coefficient (σ) is referenced to an area 1 m2.

TS = 10log10
Irefl(1 meter)

Iinc
= 10log10

σ
4π
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Doppler Effect for Sound
The Doppler effect is the change in the observed frequency of a source due to the motion
of either the source or receiver or both. Only the component of motion along the line
connecting the source and receiver contributes to the Doppler effect. Any arbitrary
motion can be replaced by motion along the source-receiver axis with velocities consisting
of the projections of the velocities along that axis. Therefore, without loss of generality,
assume that the source and receiver move along the x-axis and that the receiver is
positioned further out along the x-axis. The source emits a continuous tone of frequency,
f0, equally in all directions. First examine two important cases. The first case is where the
source is stationary and the receiver is moving toward or away from the source. A
receiver moving away from the source will have positive velocity. A receiver moving
toward the source will have negative velocity. If the receiver moves towards the source, it
will encounter wave crests more frequently and the received frequency will increase
according to

f ′ = f0
c− vr

c

Frequency will increase because vr is negative. If the receiver is moving away from the
source, the vr is positive and the frequency decreases. A similar situation occurs when the
source is moving and the receiver is stationary. Then the frequency at the receiver is

f ′ = f0
c

c− vs

The frequency increases when vs is positive as the source moves toward the receiver.
When vs is negative, the frequency decreases. Both effects can be combined into

f ′ = f0
c− vr

c
c

c− vs
= f0

c− vr
c− vs

= f0
1− vr c
1− vs c

.

There is a difference in the Doppler formulas for sound versus electromagnetic waves. For
sound, the Doppler shift depends on both the source and receiver velocities. For
electromagnetic waves, the Doppler shift depends on the difference between the source
and receiver velocities.
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Code Generation

• “Code Generation” on page 14-2
• “Generate MEX Function to Estimate Directions of Arrival” on page 14-13
• “Generate MEX Function Containing Persistent System Objects” on page 14-16
• “Functions and System Objects Supported for C/C++ Code Generation”

on page 14-19
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Code Generation
In this section...
“Code Generation Use and Benefits” on page 14-2
“Limitations Specific to Phased Array System Toolbox” on page 14-3
“General Limitations” on page 14-6
“Limitations for System Objects that Require Dynamic Memory Allocation” on page 14-
12

Code Generation Use and Benefits
You can use the Phased Array System Toolbox software together with the MATLAB
Coder™ product to create C/C++ code that implements your MATLAB functions and
models. With this software, you can

• Create a MEX file to speed up your own MATLAB application.
• Generate a stand-alone executable that runs independently of MATLAB on your own

computer or another platform.
• Include System objects in the same way as any other element.

In general, the code you generate using the toolbox is portable ANSI® C code. In order to
use code generation, you need a MATLAB Coder license. Using Phased Array System
Toolbox software requires licenses for both the DSP System Toolbox™ and the Signal
Processing Toolbox™. See the “Getting Started with MATLAB Coder” (MATLAB Coder)
page for more information.

Creating a MATLAB Coder MEX-file can lead to substantial acceleration of your MATLAB
algorithms. It is also a convenient first step in a workflow that ultimately leads to
completely standalone code. When you create a MEX-file, it runs in the MATLAB
environment. Its inputs and outputs are available for inspection just like any other
MATLAB variable. You can use MATLAB’s visualization, and other tools, for verification
and analysis.

Within your code, you can run specific commands either as generated C code or by
running using the MATLAB engine. In cases where an isolated command does not yet
have code generation support, you can use the coder.extrinsic command to embed
the command in your code. This means that the generated code reenters the MATLAB

14 Code Generation

14-2



environment when it needs to run that particular command. This also useful if you wish to
embed certain commands that cannot generate code (such as plotting functions).

The simplest way to generate MEX-files from your MATLAB code is by using the codegen
function at the command line. Often, generating a MEX-files involves nothing more than
invoking the coder command on one of your existing functions. For example, if you have
an existing function, myfunction.m, you can type the commands at the command line to
compile and run the MEX function. codegen adds a platform-specific extension to this
name. In this case, the "mex" suffix is added.

codegen myfunction.m
myfunction_mex;

You can generate standalone executables that run independently of the MATLAB
environment. You can do this by creating a MATLAB Coder project inside the MATLAB
Coder Integrated Development Environment (IDE). Alternatively, you can issue the
codegen command in the command line environment with appropriate configuration
parameters. To create a standalone executable, you must write your own main.c or
main.cpp function. See “Generating Standalone C/C++ Executables from MATLAB
Code” (MATLAB Coder) for more information.

Set Up Your Compiler

Before using codegen to compile your code, you must set up your C/C++ compiler. For
32-bit Windows platforms, MathWorks® supplies a default compiler with MATLAB. If your
installation does not include a default compiler, you can supply your own compiler. For the
current list of supported compilers, see Supported and Compatible Compilers on the
MathWorks Web site. Install a compiler that is suitable for your platform. Then, read
“Setting Up the C or C++ Compiler” (MATLAB Coder). After installation, at the MATLAB
command prompt, run mex -setup. You can then use the codegen function to compile
your code.

Functions and System Objects That Support Code Generation

Almost all Phased Array System Toolbox functions and System objects are supported for
code generation. For a list of supported functions and System objects, see “Functions and
System Objects Supported for C/C++ Code Generation” on page 14-19.

Limitations Specific to Phased Array System Toolbox
Code Generation has the following limitations when used with the Phased Array System
Toolbox software:
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• When you employ antennas and arrays that produce polarized fields, the
EnablePolarization parameter for these System objects must be set to true:

• phased.Collector
• phased.Radiator
• phased.WidebandCollector
• phased.WidebandRadiator
• phased.RadarTarget
• phased.BackscatterRadarTarget
• phased.WidebandBackscatterRadarTarget
• phased.ArrayResponse
• phased.SteeringVector

This requirement differs from regular MATLAB usage where you can set
EnablePolarization property to false even when you use a polarization-enabled
antenna. For example, this code uses a polarized antenna, which requires that
EnablePolarization property of the phased.Radiator System object be set to
true.

function [y] = codegen_radiator()
sSD = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
c = physconst('LightSpeed');
fc = 200e6;
lambda = c/fc;
d = lambda/2;
sURA = phased.URA('Element',sSD,...
    'Size',[3,3],...
    'ElementSpacing',[d,d]);
sRad = phased.Radiator('Sensor',sURA,...
    'OperatingFrequency',150e6,...
    'CombineRadiatedSignals',true,...
    'EnablePolarization',true);
x = [1;2;1];
radiatingAngle = [10;0]; % One angle for one antenna
y = step(sRad,x,radiatingAngle,eye(3,3));

• Visualization methods for Phased Array System Toolbox System objects are not
supported. These methods are pattern, patternAzimuth, patternElevation,
plot, plotResponse, and viewArray.
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• When a System object contains another System object as a property value, you must
set the contained System object in the constructor. You cannot use Object Property
notation to set the property. For example

antenna = phased.ShortDipoleAntennaElement( ...
    'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
array = phased.URA('Element',antenna,'Size',[3,3],'ElementSpacing',[0.75,0.75]);

is valid for codegen but

antenna = phased.ShortDipoleAntennaElement( ...
    'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
array = phased.URA('Size',[3,3],'ElementSpacing',[0.75,0.75]);
array.Element = antenna;

is not.
• Code generation of Phased Array System Toolbox arrays that contain Antenna Toolbox

antennas is not supported.
• A list of the limitations on Phased Array System Toolbox functions and System objects

is presented here:

Function or System Object Limitation
plotResponse This System object method is not

supported.
pattern This System object method is not

supported.
patternAzimuth This System object method is not

supported.
patternElevation This System object method is not

supported.
plot This System object method is not

supported.
viewArray This System object method is not

supported.
ambgfun Supported only when output arguments

are specified.
blakechart This function is not supported.
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Function or System Object Limitation
pambgfun Supported only when output arguments

are specified.
polsignature Supported only when output arguments

are specified.
rocpfa • Supported only when output

arguments are specified.
• The NonfluctuatingNoncoherent

signal type is not supported.
rocsnr • Supported only when output

arguments are specified.
• The NonfluctuatingNoncoherent

signal type is not supported.
stokes Supported only when output arguments

are specified.
phased.ArrayGain This System object cannot be used with

arrays that contain antenna elements
that create polarized signals, that is,
phased.ShortDipoleAntennaElemen
t or
phased.CrossedDipoleAntennaElem
ent

phased.IntensityScope This System object is not supported.
phased.MatchedFilter The CustomSpectrumWindow property

is not supported.
phased.RangeDopplerResponse The CustomRangeWindow and the

CustomDopplerWindow properties are
not supported.

phased.ScenarioViewer This System object is not supported.

General Limitations
Code Generation has some general limitations not specifically related to the Phased Array
System Toolbox software. For a more complete discussion, see “System Objects in
MATLAB Code Generation” (MATLAB Coder).
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• The data type and complexity (i.e., real or complex) of any input argument to a
function or System object must always remain the same.

• You cannot pass a System object to any method or function that you made extrinsic
using coder.extrinsic.

• You cannot load a MAT-file using coder.load when it contains a System object. For
example, if you construct a System object in the MATLAB environment and save it to a
MAT-file

sSD = phased.ShortDipoleAntennaElement(...
            'FrequencyRange',[0.9e8,2e9],'AxisDirection','Y');
save x.mat sSD;
clear sSD;

then you cannot load the System object in your compiled MEX-file:

function codegen_load1()
W = coder.load('x.mat');
sSD = W.sSD;

The compilation

codegen codegen_load1

will produced an error message: 'Found unsupported class for variable
using function 'coder.load'. MATLAB class
'phased.ShortDipoleAntennaElement' found at 'W.sSD' is
unsupported.'

To avoid this problem, you can save the object's properties to a MAT-file, then, use
coder.load to load the object properties and re-create the object. For example,
create and save a System object’s properties in the MATLAB environment

sSD = phased.ShortDipoleAntennaElement(...
            'FrequencyRange',[0.9e8,2e9],'AxisDirection','Y');
FrequencyRange = sSD.FrequencyRange;
AxisDirection = sSD.AxisDirection;
save x.mat FrequencyRange AxisDirection;

Then, write a function codegen_load2 to load the properties and create a System
object.

function codegen_load2()
W = coder.load('x.mat');
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sSD = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',W.FrequencyRange,...
    'AxisDirection',W.AxisDirection);

Then, issue the commands to create and execute the MEX-file, codegen_load2_mex.

codegen codegen_load2;
codegen_load2_mex

• System object properties are either tunable or nontunable. Unless otherwise specified,
System object properties are nontunable. Nontunable properties must be constant. A
constant is a value that can be evaluated at compile-time. You can change tunable
properties even if the object is locked. Refer to the object's reference page to
determine whether an individual property is tunable or not. If you try to set a
nontunable System object property and the compiler determines that it is not
constant, you will get an error. For example, the phased.URA System object has a
nontunable property, ElementSpacing, which sets the distance between elements.
You may want to create an array that is tuned to a frequency. You cannot pass in the
frequency as an input argument because the frequency must be a constant.

function [resp] = codegen_const1(fc)
sSD = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
c = physconst('LightSpeed');
lambda = c/fc;
d = lambda/2;
sURA = phased.URA('Element',sSD,...
    'Size',[3,3],...
    'ElementSpacing',[d,d]);
ang = [30;0];
resp = step(sURA,fc,ang);

When you codegen this function

fc = 200e6;
codegen codegen_const1 -args {fc}

the compiler responds that the value of the 'ElementSpacing' property, d, is not
constant and generates the error message: "Failed to compute constant value
for nontunable property 'ElementSpacing'. In code generation,
nontunable properties can only be assigned constant values." It is
not constant because it depends upon a non-constant variable, fc.

To correct this problem, set fc to a constant within the function:
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function [resp] = codegen_const2()
sSD = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
c = physconst('LightSpeed');
fc = 200e6;
lambda = c/fc;
d = lambda/2;
sURA = phased.URA('Element',sSD,...
    'Size',[3,3],...
    'ElementSpacing',[d,d]);
ang = [30;0];
resp = step(sURA,fc,ang);

and then compile

codegen codegen_const2

• You can assign a nontunable System object property value only once before a step
method is executed. This requirement differs from MATLAB usage where you can
initialize these properties multiple times before the step method is executed.

This example sets the Size property twice.

function codegen_property
sSD = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[0.9e8,2e9],'AxisDirection','Y');
sURA = phased.URA('Element',sSD,...
    'Size',[3,3],...
    'ElementSpacing',[0.15,0.15]);
sURA.Size = [4,4];

When you issue the command

codegen codegen_property

the following error message is produced: "A nontunable property may only be
assigned once."

• In certain cases, the compiler cannot determine the values of nontunable properties at
compile time or the code may not even compile. Consider the following example that
reads in the x,y,z-coordinates of a 5-element array from a file and then, creates a
conformal array System object. The text file, elempos.txt, contains the element
coordinates
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-0.5000 -0.2588  0       0.2588  0.5000
-0.8660 -0.9659 -1.0000 -0.9659 -0.8660
 0       0       0       0       0

The file collectWave.m contains reads the element coordinates and creates the
object.

function y = collectWave(angle)
elPos = calcElPos;
cArr = phased.ConformalArray('ElementPosition',elPos);
y = collectPlaneWave(cArr,randn(4,2),angle,1e8);
end

function elPos = calcElPos
fid = fopen('elempos.txt','r');
el = textscan(fid, '%f');
n = length(el{1});
nelem = n/3;
fclose(fid);
elPos = reshape(el{1},nelem,3).';
end

Attempting to compile

codegen collectWave -args {[10 30]}

produces the error "Permissions 'r' and 'r+' are not supported".

The following example is a work-around that uses coder.extrinsic and
coder.const to insure that the value for the nontunable property,
'ElementPosition', is a compile time constant. The function in the file,
collectWave1.m, creates the object using the calcElPos function. This function
runs inside the MATLAB interpreter at compile time.

function y = collectWave1(angle)
coder.extrinsic('calcElPos')
elPos = coder.const(calcElPos);
cArr = phased.ConformalArray('ElementPosition',elPos);
y = collectPlaneWave(cArr,randn(4,2),angle,1e8);
end

The file calcElPos.m loads the element positions from the text file

function elPos = calcElPos
fid = fopen('elempos.txt','r');
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el = textscan(fid, '%f');
n = length(el{1});
nelem = n/3;
fclose(fid);
elPos = reshape(el{1},nelem,3).';

Only the collectWave1.m file is compiled with codegen. Compiling and running

codegen collectWave1 -args {[10 30]}
collectWave1_mex([10,30])

will succeed.

An alternate work-around uses coder.load to insure that the value of the nontunable
property 'ElementPosition' is compile-time constant. In the MATLAB environment,
run calcElPos2 to save the array coordinates contained in elempos.txt to a MAT-
file. Then, load the contents of the MAT-file within the compiled code.

function calcElPos2
fid = fopen('elempos.txt');
el = textscan(fid, '%f');
fclose(fid);
elPos = reshape(el{1},[],3).';
save('positions', 'elPos');
end

The file collectWave2.m loads the coordinate positions and creates the conformal
array object

function y = collectWave2(angle)
var = coder.load('positions');
cArr = phased.ConformalArray('ElementPosition',var.elPos);
y = collectPlaneWave(cArr,randn(4,2),angle,1e8);
end

Only the collectWave2.m file is compiled with codegen. Compiling and running
collectWave2.m

codegen collectWave2 -args {[10 30]}
collectWave2_mex([10,30])

will succeed. This second approach is more general than the first since a MAT-file can
contain any variables, except System objects.

• The System object clone method is not supported.
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Limitations for System Objects that Require Dynamic Memory
Allocation
System objects that require dynamic memory allocation cannot be used for code
generation in the following cases:

Inside a MATLAB Function block in a Simulink® model.
Inside a MATLAB function in a Stateflow® chart.
When using MATLAB as the action language in a Stateflow chart.
Inside a Truth Table block in a Simulink model.
Inside a MATLAB System block (except for normal mode).
When using Simulink Coder for code generation.
When using MATLAB Coder for code generation and dynamic memory allocation is
disabled.
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Generate MEX Function to Estimate Directions of Arrival
Compile, using codegen, the function EstimateDOA.m. This function estimates the
directions-of-arrival (DOA’s) of two signals with added noise that are received by a
standard 10-element Uniform Line Array (ULA). The antenna operating frequency is 150
MHz and the array elements are spaced one-half wavelength apart. The actual direction
of arrival of the first signal is 10° azimuth, 20° elevation. The direction of arrival of the
second signal is 45° azimuth, 60° elevation. Signals and noise are generated using the
sensorsig function.

function [az] = EstimateDOA()
% Example:
% Estimate the DOAs of two signals received by a standard
% 10-element ULA with element spacing one half-wavelength apart.
% The antenna operating frequency is 150 MHz.
% The actual direction of the first signal is 10 degrees in
% azimuth and 20 degrees in elevation. The direction of the
% second signal is 45 degrees in azimuth and 60 degrees in
% elevation.
c = physconst('LightSpeed');
fc = 150e6;
lambda = c/fc;
fs = 8000;
nsamp = 8000;
sigma = 0.1;
ang = [10 20; 45 60]';
antenna = phased.IsotropicAntennaElement('FrequencyRange',[100e6,300e6]);
array = phased.ULA('Element',antenna,'NumElements',10, ...
    'ElementSpacing',lambda/2);
pos = getElementPosition(array)/lambda;
sig = sensorsig(pos,nsamp,ang,sigma^2);
estimator = phased.RootMUSICEstimator('SensorArray',array,...
    'OperatingFrequency',fc,...
    'NumSignalsSource','Property','NumSignals',2);
doas = estimator(sig);
az = broadside2az(sort(doas),[20,60]);
end

Run codegen at the command line to generate the mex function, EstimateDOA_mex, and
then run the mex function:

codegen EstimateDOA.m
EstimateDOA_mex
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The estimated arrival angles are:

az =

  10.0036   45.0030

The program contains a fixed value for the noise variance. If you wanted to reuse the
same code for different noise levels, you can pass the noise variance as an argument into
the function. This is done in the function EstimateDOA1.m, shown here, which has the
input argument sigma.

function [az] = EstimateDOA1(sigma)
% Example:
% Estimate the DOAs of two signals received by a standard
% 10-element ULA with element spacing one half-wavelength apart.
% The antenna operating frequency is 150 MHz.
% The actual direction of the first signal is 10 degrees in
% azimuth and 20 degrees in elevation. The direction of the
% second signal is 45 degrees in azimuth and 60 degrees in
% elevation.
c = physconst('LightSpeed');
fc = 150e6;
lambda = c/fc;
fs = 8000;
nsamp = 8000;
ang = [10 20; 45 60]';
antenna = phased.IsotropicAntennaElement('FrequencyRange',[100e6,300e6]);
array = phased.ULA('Element',antenna,'NumElements',10, ...
    'ElementSpacing',lambda/2);
pos = getElementPosition(array)/lambda;
sig = sensorsig(pos,nsamp,ang,sigma^2);
estimator = phased.RootMUSICEstimator('SensorArray',sULA,...
    'OperatingFrequency',fc,...
    'NumSignalsSource','Property','NumSignals',2);
doas = estimator(sig);
az = broadside2az(sort(doas),[20,60]);

Run codegen at the command line to generate the mex function, EstimateDOA1_mex,
using the -args option to specify the type of input argument. Then run the mex function
with several different input parameters:

codegen EstimateDOA1.m -args {1}
EstimateDOA1_mex(1)
az =
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   10.0130   45.0613
EstimateDOA1_mex(10)
az =
   10.1882   44.3327
EstimateDOA1_mex(15)
az =
    8.1620   46.2440

Increasing the value of sigma degrades the estimates of the azimuth angles.
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Generate MEX Function Containing Persistent System
Objects

Sometimes, it is convenient to put System objects inside a function that is to be called
many times. This eliminates the overhead in creating new instances of a System object
each time the function is called. You can write logic which creates the System object just
once and declares it to be persistent. For example, suppose you require the response
of an 11-element ULA for several different arrival angles and want to plot that response
versus angle.

function plot_ULA_response
azangles = [-90:90];
elangles = zeros(size(azangles));
fc = 100e9;
c = physconst('LightSpeed');
N = size(azangles,2);
lambda = c/fc;
d = 0.4*lambda;
numelements = 11;
resp = zeros(1,N);
sIso = phased.IsotropicAntennaElement(...
    'FrequencyRange',[1,200]*1e9,...
    'BackBaffled',false);
sULA = phased.ULA('Element',sIso,...
    'NumElements',numelements,...
    'ElementSpacing',d,...
    'Taper',taylorwin(numelements).');
for n = 1:N
    x = get_ULA_response(sULA,fc,azangles(n),elangles(n));
    resp(n) = abs(x);
end
plot(azangles,20*log10(resp));
title('ULA Response');
xlabel('Angle (deg)');
ylabel('Response (db)');
grid;
end

function resp = get_ULA_response(sULA,fc,az,el)
persistent sAR;
c = physconst('LightSpeed');
if isempty(sAR)
    sAR = phased.ArrayResponse('SensorArray',sULA,...
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        'PropagationSpeed',c,...
        'WeightsInputPort',false,...
        'EnablePolarization',false);
end
resp = step(sAR,fc,[az;el]);
end

To create the code, run codegento create the mex-file plot_ULA_response_mex, and
execute the mex-file at the command line:

codegen plot_ULA_response
plot_ULA_response_mex;

which yields the plot
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Functions and System Objects Supported for C/C++
Code Generation

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

aictest* Dimension of signal subspace
albersheim* Required SNR using Albersheim's equation
ambgfun* Ambiguity and crossambiguity function
aperture2gain* Convert effective aperture to gain
az2broadside* Convert azimuth and elevation angle to broadside angle
azel2phitheta* Convert angles from azimuth/elevation form to phi/theta form
azel2phithetapat* Convert radiation pattern from azimuth-elevation to phi-theta coordinates
azel2uv* Convert azimuth/elevation angles to u/v coordinates
azel2uvpat* Convert radiation pattern from azimuth/elevation form to u/v form
azelaxes* Spherical basis vectors in 3-by-3 matrix form
azelcut2pat Create 3-D response pattern from azimuth and elevation cuts
backscatterBicycl
ist

Backscatter radar signals from bicyclist

backscatterPedest
rian

Backscatter radar signals from pedestrian

beat2range* Convert beat frequency to range
billingsleyicm* Billingsley's intrinsic clutter motion (ICM) model
broadside2az* Convert broadside angle to azimuth angle
bw2range* Convert bandwidth to range resolution
cart2sphvec* Convert vector from Cartesian components to spherical representation
cbfweights* Conventional beamformer weights
circpol2pol* Convert circular component representation of field to linear component

representation
clone Create identical object
clone Copy of alpha-beta tracking filter
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clusterDBSCAN Data clustering
correct Correct the state and state estimation error covariance
dechirp* Perform dechirp operation on FMCW signal
delayseq* Delay or advance sequence
depressionang* Depression angle of surface target
diagbfweights* Diagonalize MIMO channel
discoverClusters* Find cluster hierarchy in data
distance Distances between measurements and predicted measurements
dop2speed* Convert Doppler shift to speed
dopsteeringvec* Doppler steering vector
effearthradius* Effective earth radius
espritdoa* Direction of arrival using TLS ESPRIT
estimateEpsilon* Estimate neighborhood clustering threshold
fogpl* RF signal attenuation due to fog and clouds
fspl* Free space path loss
gain2aperture* Convert gain to effective aperture
gaspl* RF signal attenuation due to atmospheric gases
gccphat* Generalized cross-correlation
getMonopulseEstim
ator

Create monopulse estimator from monopulse feed

getNumScatterers Number of scatterers on bicyclist
global2localcoord
*

Convert global to local coordinates

grazingang* Grazing angle of surface target
horizonrange* Horizon range
lcmvweights* Narrowband linearly constrained minimum variance (LCMV) beamformer

weights
likelihood Likelihood of measurement
local2globalcoord
*

Convert local to global coordinates
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mdltest* Dimension of signal subspace
move Position, velocity, and orientation of moving bicyclist
move Position and velocity of walking pedestrian
musicdoa* Estimate arrival directions of signals using MUSIC
mvdrweights* Minimum variance distortionless response (MVDR) beamformer weights
noisepow* Receiver noise power
npwgnthresh* Detection SNR threshold for signal in white Gaussian noise
ompdecomp Decomposition using orthogonal matching pursuit
omphybweights Hybrid beamforming weights using orthogonal matching pursuit
pambgfun* Periodic ambiguity function
phased.ADPCACance
ller*

Adaptive DPCA (ADPCA) pulse canceller

phased.AlphaBetaF
ilter

Alpha-beta filter for object tracking

phased.AngleDoppl
erResponse*

Angle-Doppler response

phased.ArrayGain* Sensor array gain
phased.ArrayRespo
nse*

Sensor array response

phased.Backscatte
rRadarTarget*

Backscatter radar target

phased.Backscatte
rSonarTarget*

Sonar target backscatter

phased.BarrageJam
mer*

Barrage jammer

phased.BeamscanEs
timator*

Beamscan spatial spectrum estimator for ULA

phased.BeamscanEs
timator2D*

2-D beamscan spatial spectrum estimator

phased.BeamspaceE
SPRITEstimator*

Beamspace ESPRIT direction of arrival (DOA) estimator for ULA

 Functions and System Objects Supported for C/C++ Code Generation

14-21



phased.CFARDetect
or*

Constant false alarm rate (CFAR) detector

phased.CFARDetect
or2D*

Two-dimensional CFAR detector

phased.Collector* Narrowband signal collector
phased.ConformalA
rray*

Conformal array

phased.ConstantGa
mmaClutter*

Constant gamma clutter simulation

phased.CosineAnte
nnaElement*

Cosine antenna element

phased.CrossedDip
oleAntennaElement
*

Crossed-dipole antenna element

phased.CustomAnte
nnaElement*

Custom antenna element

phased.CustomMicr
ophoneElement*

Custom microphone

phased.DopplerEst
imator*

Doppler estimation

phased.DPCACancel
ler*

Displaced phase center array (DPCA) pulse canceller

phased.ElementDel
ay*

Sensor array element delay estimator

phased.ESPRITEsti
mator*

ESPRIT direction of arrival (DOA) estimator for ULA

phased.FMCWWavefo
rm*

FMCW waveform

phased.FreeSpace* Free space environment
phased.FrostBeamf
ormer*

Frost beamformer

phased.GCCEstimat
or*

Wideband direction of arrival estimation
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phased.GSCBeamfor
mer*

Generalized sidelobe canceler beamformer

phased.Heterogene
ousConformalArray
*

Heterogeneous conformal array

phased.Heterogene
ousULA*

Heterogeneous uniform linear array

phased.Heterogene
ousURA*

Heterogeneous uniform rectangular array

phased.IsoSpeedUn
derwaterPaths*

Isospeed multipath sonar channel

phased.IsotropicA
ntennaElement*

Isotropic antenna element

phased.IsotropicH
ydrophone*

Isotropic hydrophone

phased.IsotropicP
rojector*

Isotropic projector

phased.LCMVBeamfo
rmer*

Narrowband LCMV beamformer

phased.LinearFMWa
veform*

Linear FM pulse waveform

phased.LOSChannel
*

Narrowband LOS propagation channel

phased.MatchedFil
ter*

Matched filter

phased.MFSKWavefo
rm*

MFSK waveform

phased.MonopulseE
stimator*

Amplitude monopulse direction finding

phased.MonopulseF
eed*

Creates sum and difference channels

phased.MultipathC
hannel*

Propagate signals in multipath channel
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phased.MUSICEstim
ator*

Estimate direction of arrival using narrowband MUSIC algorithm for ULA

phased.MUSICEstim
ator2D*

Estimate 2D direction of arrival using narrowband MUSIC algorithm

phased.MVDRBeamfo
rmer*

Narrowband minimum-variance distortionless-response beamformer

phased.MVDREstima
tor*

MVDR (Capon) spatial spectrum estimator for ULA

phased.MVDREstima
tor2D*

2-D MVDR (Capon) spatial spectrum estimator

phased.Omnidirect
ionalMicrophoneEl
ement*

Omnidirectional microphone

phased.Partitione
dArray*

Phased array partitioned into subarrays

phased.PhaseCoded
Waveform*

Phase-coded pulse waveform

phased.PhaseShift
Beamformer*

Narrowband phase shift beamformer

phased.Platform* Model platform motion
phased.PulseCompr
essionLibrary*

Create a library of pulse compression specifications

phased.PulseWavef
ormLibrary*

Create a library of pulse waveforms

phased.RadarTarge
t*

Radar target

phased.Radiator* Narrowband signal radiator
phased.RangeAngle
Response*

Range-angle response

phased.RangeDoppl
erResponse*

Range-Doppler response

phased.RangeEstim
ator*

Range estimation

14 Code Generation

14-24



phased.RangeRespo
nse*

Range response

phased.ReceiverPr
eamp*

Receiver preamp

phased.Rectangula
rWaveform*

Rectangular pulse waveform

phased.Replicated
Subarray*

Phased array formed by replicated subarrays

phased.RootMUSICE
stimator*

Root MUSIC direction of arrival (DOA) estimator for ULA and UCA

phased.RootWSFEst
imator*

Root WSF direction of arrival (DOA) estimator for ULA

phased.Scattering
MIMOChannel*

Scattering MIMO channel

phased.ShortDipol
eAntennaElement*

Short-dipole antenna element

phased.STAPSMIBea
mformer*

Sample matrix inversion (SMI) beamformer

phased.SteeringVe
ctor*

Sensor array steering vector

phased.SteppedFMW
aveform*

Stepped FM pulse waveform

phased.StretchPro
cessor*

Stretch processor for linear FM waveform

phased.SubbandMVD
RBeamformer*

Wideband minimum-variance distortionless-response beamformer

phased.SubbandPha
seShiftBeamformer
*

Subband phase shift beamformer

phased.SumDiffere
nceMonopulseTrack
er*

Sum and difference monopulse for ULA
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phased.SumDiffere
nceMonopulseTrack
er2D*

Sum and difference monopulse for URA

phased.TimeDelayB
eamformer*

Time delay beamformer

phased.TimeDelayL
CMVBeamformer*

Time delay LCMV beamformer

phased.TimeVaryin
gGain*

Time varying gain control

phased.Transmitte
r*

Transmitter

phased.TwoRayChan
nel*

Two-ray propagation channel

phased.UCA* Uniform circular array
phased.ULA* Uniform linear array
phased.Underwater
RadiatedNoise*

Radiate acoustic noise from underwater or surface sound source

phased.URA* Uniform rectangular array
phased.WidebandBa
ckscatterRadarTar
get*

Backscatter wideband signal from radar target

phased.WidebandCo
llector*

Wideband signal collector

phased.WidebandFr
eeSpace*

Wideband freespace propagation

phased.WidebandLO
SChannel*

Wideband LOS propagation channel

phased.WidebandRa
diator*

Wideband signal radiator

phased.WidebandTw
oRayChannel*

Wideband two-ray propagation channel

phitheta2azel* Convert angles from phi/theta form to azimuth/elevation form
phitheta2azelpat* Convert radiation pattern from phi/theta form to azimuth/elevation form
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phitheta2uv* Convert phi/theta angles to u/v coordinates
phitheta2uvpat* Convert radiation pattern from phi/theta form to u/v form
physconst* Physical constants
pilotcalib* Array calibration using pilot sources
pol2circpol* Convert linear component representation of field to circular component

representation
polellip* Parameters of ellipse traced out by tip of a polarized field vector
polloss* Polarization loss
polratio* Ratio of vertical to horizontal linear polarization components of a field
polsignature* Copolarization and cross-polarization signatures
predict Predict the state and state estimation error covariance
pulsint* Pulse integration
radareqpow* Peak power estimate from radar equation
radareqrng* Maximum theoretical range estimate
radareqsnr* SNR estimate from radar equation
radarvcd* Vertical coverage diagram
radialspeed* Relative radial speed
rainpl* RF signal attenuation due to rainfall
range2beat* Convert range to beat frequency
range2bw* Convert range resolution to required bandwidth
range2time* Convert propagation distance to propagation time
range2tl* Compute underwater sound transmission loss from range
rangeangle* Range and angle calculation
rcscylinder Radar cross section of cylinder
rcsdisc Radar cross section of flat circular plate
rcstruncone Radar cross section of truncated cone
rdcoupling* Range Doppler coupling
reflect Reflected signal from walking pedestrian
reflect Reflected signal from moving bicyclist
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release Release resources and allow changes to object property values and input
characteristics

reset Reset object state and property values
rocpfa* Receiver operating characteristic curves by false-alarm probability
rocsnr* Receiver operating characteristic curves by SNR
rootmusicdoa* Direction of arrival using Root MUSIC
rotpat Rotate radiation pattern
rotx* Rotation matrix for rotations around x-axis
roty* Rotation matrix for rotations around y-axis
rotz* Rotation matrix for rotations around z-axis
scatteringchanmtx
*

Scattering channel matrix

sensorcov* Sensor spatial covariance matrix
sensorsig* Simulate received signal at sensor array
shnidman* Required SNR using Shnidman's equation
sonareqsl* Compute source level using the sonar equation
sonareqsnr* Compute SNR using the sonar equation
sonareqtl* Compute transmission loss using the sonar equation
speed2dop* Convert speed to Doppler shift
sph2cartvec* Convert vector from spherical basis components to Cartesian components
spsmooth* Spatial smoothing
steervec* Steering vector
stokes* Stokes parameters of polarized field
stretchfreq2rng* Convert frequency offset to range
surfacegamma* Gamma value for different terrains
surfclutterrcs* Surface clutter radar cross section (RCS)
systemp* Receiver system-noise temperature
taylortaperc* Taylor nbar taper for arrays
time2range* Convert propagation time to propagation distance
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tl2range* Compute range from underwater transmission loss
unigrid* Uniform grid
uv2azel* Convert u/v coordinates to azimuth/elevation angles
uv2azelpat* Convert radiation pattern from u/v form to azimuth/elevation form
uv2phitheta* Convert u/v coordinates to phi/theta angles
uv2phithetapat* Convert radiation pattern from u/v form to phi/theta form
val2ind* Uniform grid index
waterfill* Waterfill MIMO power distribution
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Simulink Examples
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Convert Azimuth and Elevation to Broadside Angle
Convert a direction with an azimuth angle of 45 degrees and an elevation angle of 30
degrees into a broadside angle.

model = fullfile(matlabroot,'examples','phased','AzEl2Broadside1');
open_system(model);
sim(model);

close_system(model);
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Phase-Shift Beamforming of Plane Wave Signal
Beamform a plane wave arriving at a 10 element ULA of isotropic antenna elements. The
operating frequency of the array is 100 MHz.

model = fullfile(matlabroot,'examples','phased','PhaseShiftBeamformer1Example');
open_system(model);
sim(model);
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All the signals are delayed by 100 samples.
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Access TIREM Software
The Terrain Integrated Rough Earth Model™ (TIREM™) is a propagation model for
computing the path loss for irregular terrain and seawater scenarios. TIREM is
developed, trademarked, and licensed by Alion Science. To use TIREM, you need to
acquire it from Alion Science.

TIREM is designed to calculate the reference basic median propagation loss (path loss)
based on the terrain profile along the great circle path between two antennas for example
using digital terrain elevation data (DTED). You can use TIREM model to calculate the
point-to-point path loss between sites over irregular terrain. The model combines physics
with empirical data to provide path loss estimates. The TIREM propagation model can
predict path loss at frequencies between 1 MHz and 1 THz.

Use tiremSetup to enable TIREM access from within MATLAB. The TIREM library folder
contains the tirem3 shared library. The full library name is platform dependent:

Platform Shared library name
Windows libtirem3.dll or tirem3.dll
Linux libtirem3.so
Mac libtirem3.dylib
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